Hydrogels made with semi-interpenetrating networks of the oligomerized polyphenol tannic acid, and poly(acrylamide), exhibit high stiffness and toughness. However, the structure property relationships that give rise to enhanced mechanical properties is not well understood. Herein, we systematically investigate the hydrogels using small angle X-ray scattering and small and Ultra-small angle neutron scattering within a wide length scale range (1 nm to 20 µm), polarized optical microscopy, and rheology. Small angle X-ray and neutron scattering reveal the presence of micron sized hydrogen bonded clusters in the hydrogels. Breaking of hydrogen bonded clusters above a critical solution temperature was clearly observed in the small angle neutron scattering data. Polarized optical microscopy show enhanced anisotropy for the gels with oligomerized tannic acid incorporated - when compared to gels with monomeric tannic acid. Rheological studies at varying temperatures nicely corroborate the structural changes observed at high temperatures and reveal a self-healing behavior of the gels. The knowledge gained from this study will aid in rational design of hydrogels for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.10.029 | DOI Listing |
Nutrients
December 2024
Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy.
Background/objectives: Benign prostatic hyperplasia (BPH) is one of the most common chronic diseases affecting the urinary tract that occurs mainly in men over 40 years of age. Among the natural therapies, proanthocyanidins (PACs), which can treat a wide range of immune-mediated inflammatory diseases (IMIDs), have been shown to play an important role in the treatment of pathologies concerning prostate health. In this regard, the present study aimed to evaluate the different bioactivities of a grape seed extract (GSE), rich in polymeric PACs, and its version processed under alkaline conditions (ATGSE), characterized by a higher content of oligomeric PACs, in an animal model of BPH induced by subcutaneous injection of testosterone (1 mg/mouse).
View Article and Find Full Text PDFFoods
January 2025
Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China.
Matcha is a very popular tea food around the world, being widely used in the food, beverage, health food, and cosmetic industries, among others. At present, matcha shade covering methods, matcha superfine powder processing technology, and digital evaluations of matcha flavor quality are receiving research attention. However, research on the differences in flavor and quality characteristics of matcha from the same tea tree variety from different typical regions in China is relatively weak and urgently required.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
An energy crisis, resulting from rapid population growth and advancements in the Internet of Things, has increased the importance of energy management strategies. Conventionally, energy management is conducted using sensors; however, additional energy is required to maintain sensor operation within these systems. Herein, an all-fiber-based triboelectric nanogenerator with O plasma treatment, graphene oxide/tannic acid solution coating, and hexane/1-octadecanethiol solution coating (AFT-OGH) is fabricated to implement a self-powered sensor, generating a high electrical power density, of 0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
This study compared the use of cellulose nanofibrils (CNF) and lignocellulose nanofibrils (LCNF) in different concentrations to reinforce the poly(vinyl alcohol) (PVA) matrix. Both nanofillers significantly improved the elastic modulus and tensile strength of PVA biocomposite films. The optimum concentration of CNF and LCNF was 6% relative to PVA, which improved the tensile strength of the final PVA biocomposite with CNF and LCNF by 53% and 39%, respectively, compared to the neat PVA film.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Science of Physics, Chemistry and Engineering of Faculty of Science and Technology and Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, Portugal.
tea has received considerable attention due to its beneficial effects on health, particularly due to its antioxidant properties that are affected by several factors, which have a high influence on the final quality of black tea. The objective of this study was to investigate the biological properties of Azorean black tea from five different zones of tea plantation in order to select specific areas to cultivate tea rich in targeted compounds beneficial to human health. The free radical scavenging activity (FRSA), ferric reducing antioxidant power (FRAP), ferrous ion chelating (FIC) activities, total phenolic content (TPC), total flavonoid content (TFC), and tannins were determined by colorimetric methods, and catechin and theaflavin contents were analyzed by high-pressure liquid chromatography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!