A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly Luminescent MOF and Its In Situ Fabricated Sustainable Corn Starch Gel Composite as a Fluoro-Switchable Reversible Sensor Triggered by Antibiotics and Oxo-Anions. | LitMetric

Frequent use of antibiotics and the growth of industry lead to the pollution of several natural resources which is one of the major consequences for fatality to human health. Exploration of smart sensing materials is highly anticipated for ultrasensitive detection of those hazardous organics. The robust porous hydrogen bonded network encompassing a free-NH moiety, Zn(II)-based metal-organic framework (MOF) (), is used for the selective detection of antibiotics and toxic oxo-anions at the ppb level. The framework is able to detect the electronically dissimilar antibiotic sulfadiazine and nitrofurazone via fluorescence "turn-on" and "turn-off" processes, respectively. The antibiotic-triggered reversible fluoro-switching phenomena (fluorescence "on-off-on") are also observed by using the fluorimetric method. An extensive theoretical investigation was performed to establish the fluoro-switching response of , triggered by a class of antibiotics and also the sensing of oxo-anions. This investigation reveals that the interchange of the HOMO-LUMO energy levels of fluorophore and analytes is responsible for such a fluoro-switchable sensing activity. Sensor showed the versatile detection ability which is reflected by the detection of a carcinogenic nitro-group-containing drug "roxarsone". In view of the sustainable environment along with quick-responsive merit of , an in situ MOF gel composite (@CS; CS = corn starch) is prepared using and CS due to its useful potential features such as biocompatibility, toxicologically innocuous, good flexibility, and low commercial price. The MOF composite exhibited visual detection of the above analytes as well as antibiotic-triggered reversible fluoro-switchable colorimetric "on-off-on" response. Therefore, @CS represents a promising smart sensing material for monitoring of the antibiotics and oxo-anions, particularly appropriate for the real-field analysis of carcinogenic drug molecule "roxarsone" in food specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c13571DOI Listing

Publication Analysis

Top Keywords

corn starch
8
gel composite
8
antibiotics oxo-anions
8
smart sensing
8
antibiotic-triggered reversible
8
antibiotics
5
detection
5
highly luminescent
4
mof
4
luminescent mof
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!