HASPIN is a nuclear serine-threonine kinase originally identified in the mouse testis. Its 193 bp DNA promoter element (hereafter, 193PE) regulates bidirectional, synchronous gene expression in the germ cells of male mice. Recent studies have shown that is also expressed in trace amounts in somatic cells; HASPIN also functions in oocytes. Haspin expression is regulated by the tissue-specific methylation of genomic DNA regions, including somatic cells. This study investigated relationship between 193PE and DNA methylation by examining methylation status of transgenic mice carrying 193PE and a reporter gene. In somatic (liver) cells carrying the reporter gene, 193PE induced methylation as well as trace expression of the reporter gene. In the testis, 193PE induced hypomethylation and intense reporter gene expression. Expression of HASPIN in an egg was assessed using human chorionic gonadotrophin to induce ovulation in female transgenic mice. The results showed that 193PE induced tissue-specific methylation, which resulted in reporter gene expression in a mouse egg.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594865 | PMC |
http://dx.doi.org/10.22074/cellj.2022.8444 | DOI Listing |
Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Colorectal cancer (CRC), one of the diseases posing a threat to global health, according to the latest data, is the third most common cancer globally and the second leading cause of cancer-related deaths. The development and refinement of novel structures of small molecular compounds play a crucial role in tumor treatment and overcoming drug resistance. In this study, our objective was to screen and characterize novel compounds for overcoming drug resistance via the B Lymphoma Mo-MLV insertion region 1 (Bmi-1) reporter screen assay.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.
View Article and Find Full Text PDFγδ T cells producing either interleukin-17A (γδ cells) or interferon-γ (γδ cells) are generated in the mouse thymus, but the molecular regulators of their peripheral functions are not fully characterized. Here we established an Il17a-GFP:Ifng-YFP double-reporter mouse strain to analyze at unprecedented depth the transcriptomes of pure γδ cell versus γδ cell populations from peripheral lymph nodes. Within a very high fraction of differentially expressed genes, we identify a panel of 20 new signature genes in steady-state γδ cells versus γδ cells, which we further validate in models of experimental autoimmune encephalomyelitis and cerebral malaria, respectively.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Cariology and Endodontology, School & Hospital of Stomatology, Wuhan University, China. Electronic address:
BRCA1/BRCA2-containing complex subunit 3 (BRCC3) has been proved to exert pro-inflammatory effect in various inflammatory diseases through different mechanisms, but its involvement in pulpitis remains unclear. This study aims to investigate the regulatory role and mechanisms of BRCC3 in modulating dental pulp cell inflammation and pulpitis progression. The expression of BRCC3 was observed to be elevated in human/mouse pulpitis samples and lipopolysaccharide-stimulated human dental pulp cells (hDPCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!