Background: Each year, approximately 9.5 million metric tons of plastic waste enter the ocean with the potential to adversely impact all trophic levels. Until now, our understanding of the impact of plastic pollution on marine microorganisms has been largely restricted to the microbial assemblages that colonize plastic particles. However, plastic debris also leaches considerable amounts of chemical additives into the water, and this has the potential to impact key groups of planktonic marine microbes, not just those organisms attached to plastic surfaces.
Results: To investigate this, we explored the population and genetic level responses of a marine microbial community following exposure to leachate from a common plastic (polyvinyl chloride) or zinc, a specific plastic additive. Both the full mix of substances leached from polyvinyl chloride (PVC) and zinc alone had profound impacts on the taxonomic and functional diversity of our natural planktonic community. Microbial primary producers, both prokaryotic and eukaryotic, which comprise the base of the marine food web, were strongly impaired by exposure to plastic leachates, showing significant declines in photosynthetic efficiency, diversity, and abundance. Key heterotrophic taxa, such as SAR11, which are the most abundant planktonic organisms in the ocean, also exhibited significant declines in relative abundance when exposed to higher levels of PVC leachate. In contrast, many copiotrophic bacteria, including members of the Alteromonadales, dramatically increased in relative abundance under both exposure treatments. Moreover, functional gene and genome analyses, derived from metagenomes, revealed that PVC leachate exposure selects for fast-adapting, motile organisms, along with enrichment in genes usually associated with pathogenicity and an increased capacity to metabolize organic compounds leached from PVC.
Conclusions: This study shows that substances leached from plastics can restructure marine microbial communities with the potential for significant impacts on trophodynamics and biogeochemical cycling. These findings substantially expand our understanding of the ways by which plastic pollution impact life in our oceans, knowledge which is particularly important given that the burden of plastic pollution in the marine environment is predicted to continue to rise. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590215 | PMC |
http://dx.doi.org/10.1186/s40168-022-01369-x | DOI Listing |
BMC Microbiol
January 2025
Unidad de Manipulación Genética, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
Background: Plastic pollution is a significant environmental problem caused by its high resistance to degradation. One potential solution is polyhydroxybutyrate (PHB), a microbial biodegradable polymer. Mexico has great uncovered microbial diversity with high potential for biotechnological applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India. Electronic address:
Plant protein-based edible film and coatings have emerged as eco-friendly alternatives to synthetic packaging, offering biodegradable, non-toxic solutions. Their biocompatibility and film-forming properties make them suitable for direct application on food products, reducing reliance on non-degradable plastics and lowering environmental pollution. Despite their promising advantages, challenges remain in optimizing mechanical properties, production scalability, and consumer acceptance.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea. Electronic address:
Cigarette butts (CBs), alongside other plastic items, are widely recognized as a significant source of marine litter in coastal areas worldwide. This research is the first to examine CB pollution, offering valuable insights into its impact across various beaches in Vung Tau, Vietnam. A total of 512 CBs were collected, with an average density of 0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:
J Hazard Mater
January 2025
Bioprocesses Engineering Laboratory, Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal 575025, India. Electronic address:
Plastic pollution, especially microplastics (MPs), is a severe environmental threat. Due to the significant environmental issues posed by plastics, it is critical to use an effective and sustainable degradation technique. The study aimed to isolate and identify Indigenous bacterial strains from landfill leachate (LL) to evaluate its potential for degrading Polypropylene microplastics (PPMPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!