Most transgenic mouse models are generated through random integration of the transgene. The location of the transgene provides valuable information for assessing potential effects of the transgenesis on the host and for designing genotyping protocols that can amplify across the integration site, but it is challenging to identify. Here, we report the successful utility of optical genome mapping technology to identify the transgene insertion site in a CYP2A13/2B6/2F1-transgenic mouse model, which produces three human cytochrome P450 (P450) enzymes (CYP2A13, CYP2B6, and CYP2F1) that are encoded by neighboring genes on human chromosome 19. These enzymes metabolize many drugs, respiratory toxicants, and chemical carcinogens. Initial efforts to identify candidate insertion sites by whole genome sequencing was unsuccessful, apparently because the transgene is located in a region of the mouse genome that contains highly repetitive sequences. Subsequent utility of the optical genome mapping approach, which compares genome-wide marker distribution between the transgenic mouse genome and a reference mouse (GRCm38) or human (GRCh38) genome, localized the insertion site to mouse chromosome 14, between two marker positions at 4451324 base pair and 4485032 base pair. A transgene-mouse genome junction sequence was further identified through long-polymerase chain reaction amplification and DNA sequencing at GRCm38 Chr.14:4484726. The transgene insertion (∼2.4 megabase pair) contained 5-7 copies of the human transgenes, which replaced a 26.9-33.4 kilobase pair mouse genomic region, including exons 1-4 of Gm3182, a predicted and highly redundant gene. Finally, the sequencing results enabled the design of a new genotyping protocol that can distinguish between hemizygous and homozygous CYP2A13/2B6/2F1-transgenic mice. SIGNIFICANCE STATEMENT: This study characterizes the genomic structure of, and provides a new genotyping method for, a transgenic mouse model that expresses three human P450 enzymes, CYP2A13, CYP2B6, and CYP2F1, that are important in xenobiotic metabolism and toxicity. The demonstrated success in applying the optical genome mapping technology for identification of transgene insertion sites should encourage others to do the same for other transgenic models generated through random integration, including most of the currently available human P450 transgenic mouse models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832375 | PMC |
http://dx.doi.org/10.1124/dmd.122.001090 | DOI Listing |
Prog Mol Biol Transl Sci
January 2025
Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea. Electronic address:
Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders.
View Article and Find Full Text PDFStem Cell Reports
January 2025
Research Center, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan. Electronic address:
We have previously shown that the transplantation of stem cell-derived retinal organoid (RO) sheets into animal models of end-stage retinal degeneration can lead to host-graft synaptic connectivity and restoration of vision, which was further improved using genome-edited Islet1 ROs (gROs) with a reduced number of ON-bipolar cells. However, the details of visual function restoration using this regenerative therapeutic approach have not yet been characterized. Here, we evaluated the electrophysiological properties of end-stage rd1 retinas after transplantation (TP-rd1) and compared them with those of wild-type (WT) retinas using multi-electrode arrays.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
Objectives: The coronary heart disease (CHD) can influence the development of several diseases. The presence of CHD is correlated to a higher incidence of concurrent diabetic retinopathy (DR) in previous study. Herein, we aim to analyze the relationship between the CHD severity and following DR with different severity.
View Article and Find Full Text PDFAm J Hematol
January 2025
Department of Laboratory Medicine, Korea University College of Medicine, Seoul, South Korea.
Eye (Lond)
January 2025
Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
Purpose: To determine how Hardy-Rand-Rittler (HRR) colour vision testing correlates with visual functional and structural assessments in Cone and Cone-Rod Dystrophy.
Methods: Thirty-four Cone and 69 Cone-Rod Dystrophy patients diagnosed by electroretinography (ERG) at the Save Sight Institute in Sydney were included in a retrospective analysis. Each patient's HRR colour vision test scores were compared with markers of cone and rod system function including visual acuity (VA), ERG responses, changes on Spectral Domain Optical Coherence Tomography (OCT) and Fundus Autofluorescence.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!