Calcite as a sorbent can interact with both inorganic and organic substances through their functional groups. To measure its adsorption ability, another sorbent, saponite was selected because it can sorb glyphosate, an organic compound with a polar molecule and widely used as a herbicide. In this study, the two sorbents calcite and saponite were saturated by calcium chloride, and characterized by SEM-EDX, X-ray diffraction, and Zeta Potential Analyzer to investigate their capacity to sorb glyphosate. After saturation, the saponite became homoionic Ca-saponite with minor changes in morphology and specific surface area. But, the morphology of calcite transformed from rhombohedron to scalenohedron, with an increase of 75-folds in its specific surface, and the zeta potential became positive in alkaline pH, which contradicts the results of all previous research. The modified sorbents (Ca-calcite and Ca-saponite) were added to two soil samples to investigate each sorbent's effect on glyphosate sorption. Adsorption isotherm and percentage of glyphosate desorbed revealed the difference in binding and adsorption sites. The Langmuir and Temkin models fitted isotherm data in low concentrations better and suggested chemosorption for the uptake of glyphosate. FTIR analyses of samples with and without glyphosate were compared and results suggested that the bulk of adsorption happened in siloxane groups and on calcium carbonates surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136922DOI Listing

Publication Analysis

Top Keywords

sorb glyphosate
8
zeta potential
8
specific surface
8
glyphosate
6
adsorption
5
calcite
4
calcite play
4
play role
4
role adsorption
4
adsorption glyphosate?
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!