Scaffold proteins as dynamic integrators of biological processes.

J Biol Chem

Department of Biology, Boston University, Boston, Massachusetts, USA. Electronic address:

Published: December 2022

Scaffold proteins act as molecular hubs for the docking of multiple proteins to organize efficient functional units for signaling cascades. Over 300 human proteins have been characterized as scaffolds, acting in a variety of signaling pathways. While the term scaffold implies a static, supportive platform, it is now clear that scaffolds are not simply inert docking stations but can undergo conformational changes that affect their dependent signaling pathways. In this review, we catalog scaffold proteins that have been shown to undergo actionable conformational changes, with a focus on the role that conformational change plays in the activity of the classic yeast scaffold STE5, as well as three human scaffold proteins (KSR, NEMO, SHANK3) that are integral to well-known signaling pathways (RAS, NF-κB, postsynaptic density). We also discuss scaffold protein conformational changes vis-à-vis liquid-liquid phase separation. Changes in scaffold structure have also been implicated in human disease, and we discuss how aberrant conformational changes may be involved in disease-related dysregulation of scaffold and signaling functions. Finally, we discuss how understanding these conformational dynamics will provide insight into the flexibility of signaling cascades and may enhance our ability to treat scaffold-associated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672449PMC
http://dx.doi.org/10.1016/j.jbc.2022.102628DOI Listing

Publication Analysis

Top Keywords

scaffold proteins
16
conformational changes
16
signaling pathways
12
scaffold
9
signaling cascades
8
signaling
6
conformational
6
proteins
5
changes
5
proteins dynamic
4

Similar Publications

The inhibition of human microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC values in the range of 0.72-3.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

A Chromosomal-level genome assembly and annotation of fat greenling (Hexagrammos otakii).

Sci Data

January 2025

Shandong Key Laboratory of Disease Control in Mariculture, Key Laboratory of Benthic Fisheries Aquaculture and Enhancement, Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao, 266104, China.

Fat greenling (Hexagrammos otakii Jordan & Starks, 1895) is a valuable marine fish species, crucial for aquaculture in Northern China due to its high-quality meat and significant economic value. However, the aquaculture industry faces challenges such as trait degradation, early sexual maturity, and disease susceptibility, necessitating advanced genomic interventions for sustainable cultivation. This study presents the first chromosomal-level genome assembly of H.

View Article and Find Full Text PDF

Structural basis of phosphate export by human XPR1.

Nat Commun

January 2025

Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China.

Phosphorus in crucial for all living organisms. In vertebrate, cellular phosphate homeostasis is partly controlled by XPR1, a poorly characterized inositol pyrophosphate-dependent phosphate exporter. Here, we report the cryo-EM structure of human XPR1, which forms a loose dimer with 10 transmembrane helices (TM) in each protomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!