Microplastics pollution is an issue of great concern for scientists, governmental bodies, ecological organisations, and the general public. Microplastics pollution is widespread and is a great environmental problem on account of its potential toxicity for marine biota and human health. Today, almost all the world's seas and oceans are polluted with microplastics. The Baltic Sea is a semi-enclosed reservoir of brackish water and is a hotspot for contamination in terms of eutrophication and the presence of organic matter. Microplastics are quite intense, based on data from studies of marine litter and microplastics in the Baltic Sea. The number of microplastics in the Baltic Sea water is 0.07-3300 particles/m, and in sediments 0-10179 particles/kg. These amounts prove that the waters and sediments of the Baltic Sea are heavily contaminated with microplastics. This article provides a comprehensive review of the microplastic origins and transport routes to the Baltic Sea. The data is presented as the concentration of microplastics in surface waters, sediments, and sea sand. The extraction methods used and the microplastics techniques are also presented. The possibilities and limitations of water and sediment sampling methods for microplastics determination were summarised, taking into account sampling tools, volume and depth. Extraction, separation, filtration, and visual sorting are outlined as sample preparation techniques for microplastic analysis. This review also focuses on the problems of obtaining data relevant to the development of the mathematical models necessary to monitor trends in the spread of microplastics in the Baltic Sea. Finally, several important laws and policies, which are in place in the Baltic States to control and manage microplastic pollution in the region, are highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120453 | DOI Listing |
Sci Rep
January 2025
Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Phytoplankton blooms exhibit varying patterns in timing and number of peaks within ecosystems. These differences in blooming patterns are partly explained by phytoplankton:nutrient interactions and external factors such as temperature, salinity and light availability. Understanding these interactions and drivers is essential for effective bloom management and modelling as driving factors potentially differ or are shared across ecosystems on regional scales.
View Article and Find Full Text PDFSci Total Environ
January 2025
Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany.
This study evaluates the distribution and sources of thermogenic organic matter in the Baltic Sea water column, focusing on polycyclic aromatic hydrocarbons (PAH), dissolved black carbon (DBC), and the imprint of thermogenic organic matter on the dissolved organic matter (DOM) pool. The spatial patterns and complex interactions between land-based and atmospheric sources were assessed from Kiel Bay to Pomeranian Bight within the water column with the combined targeted and untargeted approaches. The findings emphasize the significant influence of terrestrial inputs from the Oder River and autochthonous production composing DOM.
View Article and Find Full Text PDFThis review discusses the contribution of phenotypic heterogeneity in fungi to pathogenesis and antifungal drug resistance.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland.
Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.
View Article and Find Full Text PDFChemosphere
January 2025
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany; Christian-Albrechts University Kiel, Institute of Geosciences, Ludewig-Meyn-Str, 24118, Kiel, Germany.
Relic munitions from warfare and intentional dumping contaminate coastal waters worldwide, with an estimated 300,000 tons in the German Baltic Sea alone. These contain toxic conventional explosive chemicals, including 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and 1,3-dinitrobenzene (DNB). Corrosion of metal munition housings in seawater releases these munition chemicals (MCs) to the marine environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!