Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The undesirable phase transformation of Mn-based P2-layered oxide cathodes is a tremendous challenge in commercializing Mn-based oxide cathodes for sodium-ion batteries. In this work, NaMnO cathode with stable P2-type structure was successfully synthesized by modulating its coordination numbers to suppress the preferred orientation growth of (001) crystal plane, which was realized to maintain a stable P2-type structure in the whole state of charging and discharging. Specifically, designing Mn six coordination sites to lower the high surface energy of (001) crystal plane is an effective way to reduce nucleation rates, which leads to the production of few grain boundaries and the suppression of layer-to-layer stacking in the crystal growth stage. Due to their fewer grain boundaries and skeleton structure with layer-to-layer stacking, the interlaminar stress and intragranular fatigue cracks can be alleviated in the long-life cycling performance of NaMnO cathode. NaMnO cathodes derived from the precursor of Mn six coordination sites (C-NaMnO) have more exposed {010} crystal face and enlarged sodium-ion diffusion channels and structure integrity compared to NaMnO cathode prepared by the precursor of Mn four coordination sites (O-NaMnO). Therefore, C-NaMnO cathode delivers an initial capacity of 106.8 mAh/g and has excellent capacity retention of 94.8 % after 150 cycles at 80 mAh/g. The rational design strategy endows Mn-based P2-layered oxide cathodes with stable sodium-ion diffusion channels and lamellar structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.09.065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!