Zinc-air batteries using gels as carriers for electrolyte absorption have attracted extensive attention due to their flexibility, deformability, and high specific capacity. However, traditional mono-polymer gel electrolytes display poor mechanical properties and low ionic conductivity at wide-window temperatures. Here, the enhanced gel polymer (PAM-F/G) modified by dual surfactants is present by way of pluronic F127 and layered graphene oxide introduced into the polyacrylamide (PAM) matrix. The gel electrolyte procured by absorbing 6 M KOH exhibits improved mechanical characteristics, temperature adaptability, and a satisfactory ionic conductivity (276 mS cm). The results demonstrate that a flexible zinc-air battery assembled by PAM-F/G electrolyte outputs a high power density (155 mW cm) and can even operate reliably (>40 h) at -20 °C. These findings are available for promoting the research and popularization of flexible zinc-air batteries with high performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c13625 | DOI Listing |
Langmuir
January 2025
College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122 Wuxi, P. R. China.
In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.
View Article and Find Full Text PDFInorg Chem
January 2025
Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
Promoting the rate of the oxygen reduction reaction (ORR) is critical for boosting the overall energy efficiency of the flexible zinc-air batteries (FZABs). Inspired by nature, we designed "branch-leaf" like hierarchical porous carbon nanofibers with ultralow loadings of Ir nanoparticles (NPs) derived from covalent-organic framework/metal-organic framework (COF/MOF) core-shell hybrids. The as-obtained Ir/FeZn-hierarchical porous carbon nanofibers (HPCNFs) showcase enhanced ORR performance, and the ultralow Ir loading reduces the cost while maintaining catalytic capacity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Aviation Oil and Material, Air Force Logistics Academy, 72 Xi Ge Road, Xuzhou, Jiangsu 221000, China.
Metal-air batteries desire highly active, durable, and low-cost oxygen reduction catalysts to replace expensive platinum (Pt). The Fe-N-C catalyst is recognized as the most promising candidate for Pt; however, its durability is hindered by carbon corrosion, while activity is restricted due to limited oxygen for the reaction. Herein, TiN is creatively designed to be hybridized with Fe-N-C (TiN/Fe-N-C) to relieve carbon corrosion and absorb more oxygen when catalyzing oxygen reduction.
View Article and Find Full Text PDFSmall
January 2025
School of Mechanical Engineering, Guangxi University, Nanning, 530004, P. R. China.
Flexible zinc-air batteries (FZABs) present a promising solution for the next generation of power sources in wearable electronics, owing to their high energy density, cost-effectiveness, and safety. However, solid-state electrolytes for FZABs continue to face challenges related to rapid water loss and low ionic conductivity. In this study, a hydrophilic and stable tetramethylguanidine-modified graphene oxide as an additive, which is incorporated into sodium polyacrylate to develop a high-performance gel polymer electrolyte (GPE), is designed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
The rational design and synthesis of bifunctionally active and durable oxygen electrocatalysts have garnered significant attention for electrochemical energy conversion and storage. Intermetallic nanostructures are particularly promising for these applications due to their unique catalytic properties and exceptional durability. In this study, we present a fascinating synthetic approach for the direct synthesis of a bifunctional oxygen electrocatalyst based on nitrogen-doped carbon-encapsulated ordered PdFe (o-PdFe@NC) intermetallic, using a cyano-bridged bimetallic single-source precursor tailored for aqueous rechargeable zinc-air batteries (ZABs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!