As a result of growing environmental issues and stringent carbon emission (CEM) regulations imposed throughout the globe, low CEM has become one of the essential requirements of manufacturing industries. Low-carbon manufacturing, which aims to reduce carbon intensity and improve process efficiency, has evolved as emerging issue that has encouraged a lot of research into quantifying the CEM of different manufacturing processes. To comply with increasingly stringent CEM regulations and achieve low carbon manufacturing, manufacturing industries require accurate CEM data for their products. In this work, an empirical model is developed to quantify carbon emissions for machining of cylindrical parts. The CEM associated with a cylindrical part machining is decomposed into CEM from electrical energy consumption, material consumption, cutting tool wear, and coolant consumption and from the disposal of machining waste materials. Electrical energy consumption of a machine tool is further decomposed into different energy modules: startup, standby, spindle acceleration, idle, rapid positioning, air-cutting, and cutting for accurate quantification of CEM. Energy consumption models are developed for each module, and are integrated to quantify the total energy consumption of the machine tool. Finally, the developed model is applied on a cylindrical part with three different process plans to validate the developed model for practical implementation in industry. The proposed model can be utilized in the manufacturing industry to quantify carbon emissions based on different process parameters before machining a cylindrical part to achieve low carbon manufacturing process planning and scheduling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-23349-2 | DOI Listing |
iScience
January 2025
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.
View Article and Find Full Text PDFWater Res X
May 2025
Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
Pumps in Water Distribution Networks (WDNs) adequately provide effective pressure where low elevation or high head losses are detected within the system. One of the most effective strategies to ensure economic sustainability is Pump Scheduling (PS), assuring the optimization of pump management and enabling significant energy cost saving. Meta-heuristic algorithms can be applied to Pump Scheduling, given their ability to provide reliable global solutions, further complemented by limited computational efforts.
View Article and Find Full Text PDFFront Sports Act Living
January 2025
Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan.
Introduction: Marathon running has become increasingly popular among amateur athletes, many of whom maintain speeds of 8-9 km/h. However, existing methods for estimating oxygen consumption (VO) during running and walking-such as the American College of Sports Medicine (ACSM) equations and commercial activity monitors-often lack accuracy and transparency. This study introduces the Hata-Yanagiya Physical Activity Calculation (HYPAC) system, a novel approach for estimating VO using Global Positioning System (GPS) and map data.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Material Science and Art Design, Inner Mongolia Agricultural University Hohhot 010018 China
Corn stover was used as raw material, and purification, oxalic acid treatment, oxidation treatment, and ultrasonic treatment were performed to realize the preparation of corn stover nanocellulose with low energy consumption. The effects of oxalic acid concentration (1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt%) on the purity, morphology, crystalline structure and oxidation efficiency of corn stover cellulose during oxalic acid treatment were investigated. The controllable preparation of corn stover nanocellulose was achieved by changing the parameter conditions of ultrasonic treatment.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Marketing, Trade and Social Studies, Faculty of Economics and Management, Slovak University of Agriculture, 949 76, Nitra, Slovakia.
The rapidly increasing number of elderly people in the world highlights the need for the development of innovative foods with modified textures that do not expose the elderly to the risks associated with food consumption (risk of aspiration, suffocation, and chocking). Providing specific food such as edible gel for the elderly population and the study of their properties is a challenge for the scientific community. There are some available gels in the supermarkets destined for the sports population, with specific texture and technological properties that could be used and extrapolated for senior people.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!