Background: Plant organelles are highly motile where their movement is significant for fast distribution of material around the cell, facilitation of the plant's ability to respond to abiotic and biotic signals, and for appropriate growth. Abiotic and biotic stresses are among the major factors limiting crop yields, and biological membranes are the first target of these stresses. Plants utilize adaptive mechanisms namely myosin to repair injured membranes following exposure to abiotic and biotic stresses.
Objective: Due to the economic importance and cultivation of potato grown under abiotic and biotic stress prone areas, identification and characterization of myosin family members in potato were performed in the present research.
Methods: To identify the myosin genes in potato, we performed genome-wide analysis of myosin genes in the S. tuberosum genome using the phytozome. All putative sequences were approved with the interproscan. Bioinformatics analysis was conducted using phylogenetic tree, gene structure, cis-regulatory elements, protein-protein interaction, and gene expression.
Result: The majority of the cell machinery contain actin cytoskeleton and myosins, where motility of organelles are dependent on them. Homology-based analysis was applied to determine seven myosin genes in the potato genome. The members of myosin could be categorized into two groups (XI and VIII). Some of myosin proteins were sub-cellularly located in the nucleus containing 71.5% of myosin proteins and other myosin proteins were localized in the mitochondria, plasma-membrane, and cytoplasm. Determination of co-expressed network, promoter analysis, and gene structure were also performed and gene expression pattern of each gene was surveyed. Number of introns in the gene family members varied from 1 to 39. Gene expression analysis demonstrated that StMyoXI-B and StMyoVIII-2 had the highest transcripts, induced by biotic and abiotic stresses in all three tissues of stem, root, and leaves, respectively. Overall, different cis-elements including abiotic and biotic responsive, hormonal responsive, light responsive, defense responsive elements were found in the myosin promoter sequences. Among the cis-elements, the MYB, G-box, ABRE, JA, and SA contributed the most in the plant growth and development, and in response to abiotic and biotic stress conditions.
Conclusion: Our results showed that myosin genes can be utilized in breeding programs and genetic engineering of plants with the aim of increasing tolerance to abiotic and biotic stresses, especially to viral stresses such as PVY, PVX, PVA, PVS, high light, drought, cold and heat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-022-08007-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!