Field experiments were conducted to investigate the effects of two foliar fertilizers, water-soluble chitosan (WSC) and NaSiO (Si), on the accumulation of Pb by a low-Pb accumulator Brassica napus cultivar (QY-1) grown at two mildly Pb-contaminated farmland sites surrounding working smelters in Jiyuan city, Henan province, China. Regardless of the frequency of the fertilizer treatments, the foliar application of WSC (0.01%) or Si (0.15%) significantly increased the QY-1 biomass and decreased the grain Pb concentrations. Compared with the control treatment, spraying plants once with WSC or Si during the flowering period achieved the best effect in the two soils with different pollution, which may be because inhibiting the accumulation of Pb in grains by decreasing the husk-to-grain transfer coefficient. Thus, the foliar application of WSC or Si combined with the cultivation of a low-Pb accumulator is a promising approach for optimizing the utility of Pb-contaminated farmland affected by atmospheric deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-022-03618-z | DOI Listing |
PeerJ
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China.
Soil salinization has resulted in a significant decrease in crop yields, particularly affecting the production of crops like rice ( L.). Prohexadione calcium (Pro-Ca) can enhance crop resilience against failure by managing plant height.
View Article and Find Full Text PDFJACS Au
December 2024
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.
The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Horticultural Science and Landscaping engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
Growth regulators can improve the quality and production of fruit trees. This research was conducted over two successive years to evaluate the effect of preharvest sprays of growth regulators on the physicochemical properties of date palm fruit (Phoenix dactylifera cv. 'Shahabi') during khalal and tamar stages in a palm research station at Bushehr province.
View Article and Find Full Text PDFSci Rep
December 2024
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.
View Article and Find Full Text PDFSci Rep
December 2024
Horticulture Crops Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education Centre, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran.
Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!