Accurate measurement of plant transpiration is critical to gaining a better understanding of plant water use and exploration of the influence of plants on regional and even global climate. Heat tracer-based sap flow (HTSF) techniques are currently the dominant method to estimate plant transpiration at the individual plant level. However, the majority of current research focuses on specific applications or the evaluation of the method itself, and there is a lack of an overall analysis of HTSF methods. The objectives of this study were: (i) to briefly review the theories and categories of the various HTSF methods, and (ii) to undertake a bibliometric analysis of the use of HTSF methods in measuring plant transpiration. Each HTSF method is described mathematically and their application and pros and cons are briefly discussed. A bibliometric analysis was conducted using 3964 papers published between 1992 and 2020 archived in the Web of Science core collection. The analysis identified publication trends, the most productive authors, organizations, and countries, as well as the most utilized HTSF method (i.e., thermal dissipation) and journals in which these papers were published. In addition, world distribution maps of the use of HTSF methods and tree species measured were drawn based on 741 selected publications with in situ measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erac424DOI Listing

Publication Analysis

Top Keywords

htsf methods
16
bibliometric analysis
12
plant transpiration
12
heat tracer-based
8
tracer-based sap
8
sap flow
8
methods tree
8
analysis htsf
8
htsf method
8
papers published
8

Similar Publications

Article Synopsis
  • Dermal fibroblasts (DFs) from hypertrophic scars (HTSFs) show higher proliferation and motility compared to those from normal skin (NDFs), despite minor karyotype differences.
  • A detailed proteomic analysis revealed unique metabolic proteins in HTSFs that could explain their aggressive behavior and links to scarring.
  • Identified proteins related to cell growth, movement, fibrosis, and inflammation suggest potential targets for future treatments or prevention strategies for skin scarring.
View Article and Find Full Text PDF

Effect of Hypertrophic Scar Fibroblast-Derived Exosomes on Keratinocytes of Normal Human Skin.

Int J Mol Sci

March 2023

Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea.

Epidermal keratinocytes are highly activated, hyper-proliferated, and abnormally differentiated in the post-burn hypertrophic scar (HTS); however, the effects of scar fibroblasts (SFs) on keratinocytes through cell-cell interaction in HTS remain unknown. Here, we investigated the effects of HTSF-derived exosomes on the proliferation and differentiation of normal human keratinocytes (NHKs) compared with normal fibroblasts (NFs) and their possible mechanism to provide a reference for clinical intervention of HTS. Fibroblasts were isolated and cultured from HTS and normal skin.

View Article and Find Full Text PDF

Accurate measurement of plant transpiration is critical to gaining a better understanding of plant water use and exploration of the influence of plants on regional and even global climate. Heat tracer-based sap flow (HTSF) techniques are currently the dominant method to estimate plant transpiration at the individual plant level. However, the majority of current research focuses on specific applications or the evaluation of the method itself, and there is a lack of an overall analysis of HTSF methods.

View Article and Find Full Text PDF

Introduction: Osteoporotic vertebral fractures are a major healthcare problem. Vertebral cement augmentation (VCA) is frequently used as a minimally invasive surgical approach to manage symptomatic fractures. However, there is a potential risk of adjacent segment fracture (ASF), which may require second surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!