Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus that has caused over 6 million fatalities. SARS-CoV-2 variants with spike mutations are frequently endowed with a strong capability to escape vaccine-elicited protection. Due to this characteristic, a broad-spectrum inhibitor against SARS-CoV-2 infection is urgently demanded. Ganoderma microsporum immunomodulatory protein (GMI) was previously reported to alleviate infection of SARS-CoV-2 through ACE2 downregulation whereas the impact of GMI on virus itself was less understood. Our study aims to determine the effects of GMI on SARS-CoV-2 pseudovirus and the more detailed mechanisms of GMI inhibition against SARS-CoV-2 pseudovirus infection.

Methods: ACE2-overexpressing HEK293T cells (HEK293T/ACE2) and SARS-CoV-2 pseudoviruses carrying spike variants were used to study the effects of GMI in vitro. Infectivity was evaluated by fluorescence microscopy and flow cytometry. Fusion rate mediated by SARS-CoV-2 spike protein was examined with split fluorescent protein /luciferase systems. The interactions of GMI with SARS-CoV-2 pseudovirus and ACE2 were investigated by immunoprecipitation and immunoblotting.

Results: GMI broadly blocked SARS-CoV-2 infection in various cell lines. GMI effectively inhibited the infection of pseudotyped viruses carrying different emerged spike variants, including Delta and Omicron strains, on HEK293T/hACE2 cells. In cell-free virus infection, GMI dominantly impeded the binding of spike-bearing pseudotyped viruses to ACE2-expressing cells. In cell-to-cell fusion model, GMI could efficiently inhibit spike-mediated syncytium without the requirement of ACE2 downregulation.

Conclusions: GMI, an FDA-approved dietary ingredient, acts as a multifunctional broad-spectrum antiviral against SARS-CoV-2 and could become a promising candidate for preventing or treating SARS-CoV-2 associated diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515347PMC
http://dx.doi.org/10.1016/j.biopha.2022.113766DOI Listing

Publication Analysis

Top Keywords

sars-cov-2
13
sars-cov-2 pseudovirus
12
gmi
11
ganoderma microsporum
8
microsporum immunomodulatory
8
immunomodulatory protein
8
acts multifunctional
8
multifunctional broad-spectrum
8
broad-spectrum antiviral
8
antiviral sars-cov-2
8

Similar Publications

Strengthening serological studies: the need for greater geographical diversity, biobanking, and data-accessibility.

Trends Microbiol

January 2025

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.

Serological studies uniquely strengthen infectious disease surveillance, expanding prevalence estimates to encompass asymptomatic infections, and revealing the otherwise inapparent landscape of immunity, including who is and is not susceptible to infection. They are thus a powerful complement to often incomplete epidemiological and public health measures (administrative measures of vaccination coverage, incidence estimates, etc.).

View Article and Find Full Text PDF

The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.

View Article and Find Full Text PDF

Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Establishing quality assurance for COVID-19 antigen tests in the Indo Pacific Region: A multi-site implementation study.

Diagn Microbiol Infect Dis

December 2024

Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia; Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia.

Background: Quality assurance programs (QAPs) are used to evaluate the analytical quality of a diagnostic test and provide feedback to improve quality processes in testing. Rapid diagnostic tests were used in both laboratory and non-laboratory settings to diagnose COVID-19, although varied in reported performance. We aimed to design and implement a QAP for antigen rapid diagnostic tests (Ag-RDTs) for COVID-19 in Cambodia, Lao PDR, and Papua New Guinea.

View Article and Find Full Text PDF

Delays in chemotherapy and radiotherapy of breast cancer during COVID-19 pandemic.

J Infect Public Health

January 2025

Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran 1449614535, Iran.

Background: During the COVID-19 pandemic, hospitals were overwhelmed with infected patients, leading to a disruption in the delivery of services. Patients with cancer, including breast cancer, rely on timely treatment, as delays can reduce survival rates. In this study, we investigated delays in treatment and the factors contributing to delays in chemotherapy and radiotherapy for these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!