Alzheimer's disease (AD) is a neurodegenerative disease whose molecular mechanisms are activated several years before cognitive symptoms appear. Genotype-based prediction of the phenotype is thus a key challenge for the early diagnosis of AD. Machine learning techniques that have been proposed to address this challenge do not consider known biological interactions between the genes used as input features, thus neglecting important information about the disease mechanisms at play. To mitigate this, we first extracted AD subnetworks from several protein-protein interaction (PPI) databases and labeled these with genotype information (number of missense variants) to make them patient-specific. Next, we trained Graph Neural Networks (GNNs) on the patient-specific networks for phenotype prediction. We tested different PPI databases and compared the performance of the GNN models to baseline models using classical machine learning techniques, as well as randomized networks and input datasets. The overall results showed that GNNs could not outperform a baseline predictor only using the APOE gene, suggesting that missense variants are not sufficient to explain disease risk beyond the APOE status. Nevertheless, our results show that GNNs outperformed other machine learning techniques and that protein-protein interactions lead to superior results compared to randomized networks. These findings highlight that gene interactions are a valuable source of information in predicting disease status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587223 | PMC |
http://dx.doi.org/10.1038/s41598-022-21491-y | DOI Listing |
J Mol Model
January 2025
Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.
Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFJ Youth Adolesc
January 2025
Research Center of Adolescent Psychology and Behavior, School of Education, Guangzhou University, Guangzhou, China.
Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!