Gadolinium-doped fluorescent carbon quantum dots as MRI contrast agents and fluorescent probes.

Sci Rep

Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.

Published: October 2022

In this research passivated gadolinium-doped carbon quantum dots (Gd-doped CQDs) were synthesized from starch by a hydrothermal method. The X-ray diffraction (XRD) pattern of the Gd-doped CQDs showed the formation of highly amorphous carbon. The Fourier transform infrared spectroscopy (FTIR) results suggested that the CQDs are functionalized with C-N and N-H bonds. The synthesized CQDs with a size distribution of 2-8 nm have an absorption peak at 271 nm in UV-Visible spectroscopy (UV-Vis). The photoluminescence (PL) in CQDs was dependent on the excitation wavelength. The QY of the synthesized CQDs was calculated to be 13.2%. The Gd-doped CQDs exhibited sustained PL in ionic solutions with different ionic strengths and different temperatures up to 65 °C. Fluorescence imaging on mouse C/connective tissue-L929 cells confirmed that Gd-doped CQDs could be well distributed over the cytoplasm. The magnetic resonance imaging (MRI) showed that the Gd-doped CQDs have extremely high longitudinal and transverse relaxivity values of as high as 218.28 mM s and 364.68 mM s. The synthesized Gd-doped CQDs are promising candidates as multifunctional imaging probes and MRI contrast agents in biomedical diagnosis and brain mapping applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9587221PMC
http://dx.doi.org/10.1038/s41598-022-22518-0DOI Listing

Publication Analysis

Top Keywords

gd-doped cqds
24
cqds
10
carbon quantum
8
quantum dots
8
mri contrast
8
contrast agents
8
synthesized cqds
8
gd-doped
6
gadolinium-doped fluorescent
4
fluorescent carbon
4

Similar Publications

In this research passivated gadolinium-doped carbon quantum dots (Gd-doped CQDs) were synthesized from starch by a hydrothermal method. The X-ray diffraction (XRD) pattern of the Gd-doped CQDs showed the formation of highly amorphous carbon. The Fourier transform infrared spectroscopy (FTIR) results suggested that the CQDs are functionalized with C-N and N-H bonds.

View Article and Find Full Text PDF

Nowadays, it is highly desired to develop dual-modal fluorescence and magnetic resonance imaging (FI/MRI) probes in medical imaging because it unites the respective advantages of each imaging modality: high sensitivity of FI and superior spatial resolution of MRI. In this study, a facile strategy to fabricate a new bimodal imaging nanoprobe (Gd-CQDs@N-FeO) was reported by integrating the fluorescence ability of carbon quantum dots (CQDs) and T and T contrast-enhancing functionality of Gd(III) ions and FeO nanoparticles into a single hybrid nanostructure. The hybrid composites were investigated by FT-IR, XRD, TEM, XPS, VSM, and so on, which confirmed that Gd-CQDs@N-FeO nanoparticles were successfully obtained and exhibited superparamagnetic property at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!