GSK3beta inhibitor-induced dental mesenchymal stem cells regulate ameloblast differentiation.

J Oral Biosci

Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan; Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan. Electronic address:

Published: December 2022

Objectives: Epithelial-mesenchymal interactions are extremely important in tooth development and essential for ameloblast differentiation, especially during tooth formation. We aimed to identify the type of mesenchymal cells important in ameloblast differentiation.

Methods: We used two types of cell culture systems with chambers and found that a subset of debtal mesenchimal cells is important for the differentiatiuon of dental spithelial cells into ameloblasts. Further, we induced dental pulp stem cell-like cells from dental pulp stem cells using the small molecule compound BIO ( a GSK-3 inhibitor IX) to clarify the mechanism involved in ameloblast differentiation induced by dental pulp stem cells.

Results: The BIO-induced dental pulp cells promoted the expression of mesenchymal stem cell markers Oct3/4 and Bcrp1. Furthermore, we used artificial dental pulp stem cells induced by BIO to identify the molecules expressed in dental pulp stem cells required for ameloblast differentiation. Panx3 expression was induced in the dental pulp stem cell through interaction with the dental epithelial cells. In addition, ATP release from cells increased in Panx3-expressing cells. We also confirmed that ATP stimulation is accepted in dental epithelial cells.

Conclusions: These results showed that the Panx3 expressed in dental pulp stem cells is important for ameloblast differentiation and that ATP release by Panx3 may play a role in epithelial-mesenchymal interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.job.2022.10.002DOI Listing

Publication Analysis

Top Keywords

dental pulp
32
pulp stem
28
stem cells
20
ameloblast differentiation
20
cells
13
dental
12
induced dental
12
stem
9
mesenchymal stem
8
cells ameloblast
8

Similar Publications

Background: Equine odontoclastic tooth resorption and hypercementosis (EOTRH) is a painful disorder primarily affecting the incisor teeth of horses over 15 years of age. Clinical signs of the disease include prehension problems, halitosis and in severe cases weight loss. The disease predominately affects the reserve crown and presents as a loss of dental tissue and excessive build-up of cementum.

View Article and Find Full Text PDF

Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond Strength.

Med Sci Monit

January 2025

Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.

BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).

View Article and Find Full Text PDF

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Role of FOXO3a in LPS-induced inflammatory conditions in human dental pulp cells.

J Oral Biosci

January 2025

Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea. Electronic address:

Objectives: We investigated the involvement of FOXO3a in lipopolysaccharide (LPS)-induced inflammation in primary human dental pulp cells (HDPCs).

Methods: HDPCs that were isolated from donors undergoing tooth extraction for orthodontic purposes were cultured with or without 1 μg/mL LPS at various intervals. The FOXO3a localization in the HDPCs was verified using immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!