Understanding the frequency of non-additive effects of pesticides (synergism and antagonism) is important in the context of risk assessment. The goal of this study was to investigate the prevalence of non-additive effects of pesticides to honey bees (Apis mellifera). We investigated a large set of mixtures including insecticides and fungicides of different chemical modes of action and classes. The mixtures included represent a relevant sample of pesticides that are currently used globally. We investigated whether the experimental toxicity of the mixtures could be predicted based on the Concentration Addition (CA) model for acute contact and oral adult bee toxicity tests. We measured the degree of deviation from the additivity predictions of the experimental toxicity based on the well-known Mixture Deviation Ratio (MDR). Further, we investigated the appropriate MDR thresholds that should be used for the identification of non-additive effects based on acceptable rates for false positive (alpha) and true positive (beta) findings. We found that a deviation factor of MDR = 5 is a sound reference for labeling potential non-additive effects in acute adult bee experimental designs when assuming a typical Coefficient of Variation (CV%) = 100 in the determination of the LD of a pesticide (a factor of 2× deviation in the LD resulting from inter-experimental variability). We found that only 2.4 % and 9 % of the mixtures evaluated had an MDR > 5 and MDR < 0.2, respectively. The frequency and magnitude of deviation from additivity found for bees in this study are consistent with those of other terrestrial and aquatic taxa. Our findings suggest that additivity is a good baseline for predicting the toxicity of pesticide mixtures to bees, and that the rare cases of synergy of pesticide mixtures to bees are not random but have a mechanistic basis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.159518DOI Listing

Publication Analysis

Top Keywords

non-additive effects
16
pesticide mixtures
12
toxicity pesticide
8
honey bees
8
concentration addition
8
effects pesticides
8
experimental toxicity
8
adult bee
8
deviation additivity
8
mixtures bees
8

Similar Publications

Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

View Article and Find Full Text PDF

Raman scattering of water in vicinity of polar complexes: Computational insight into baseline subtraction.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:

Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.

View Article and Find Full Text PDF

Quantifying the Interactions and Cumulative Effects of Multiple Stressors on Salmonids.

Environ Manage

December 2024

Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490 rue de la Couronne Street, Quebec City, QC, G1K9A9, Canada.

The cumulative effects of human activities and natural pressures pose significant threats to ecosystem functioning and global biodiversity. Assessing the cumulative impact of multiple stressors-whether acting simultaneously or sequentially and directly or indirectly-is challenging due to their complex interactions. Consequently, these interactions may be unintentionally overlooked or disregarded in management decisions.

View Article and Find Full Text PDF

Phenomic prediction (PP), a novel approach utilizing Near Infrared Spectroscopy (NIRS) data, offers an alternative to genomic prediction (GP) for breeding applications. In PP, a hyperspectral relationship matrix replaces the genomic relationship matrix, potentially capturing both additive and non-additive genetic effects. While PP boasts advantages in cost and throughput compared to GP, the factors influencing its accuracy remain unclear and need to be defined.

View Article and Find Full Text PDF

Genomic Prediction of Semen Traits in Boars Incorporating Biological Interactions.

Int J Mol Sci

December 2024

Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affair, Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.

In the context of modern pig farming, the central role of boars is underscored by large-scale centralized breeding and the widespread application of artificial insemination techniques. However, previous studies and breeding programs have focused mainly on product efficiency traits, such as growth rate, lean meat yield, and litter size, often neglecting boar semen traits. In this study, we estimated the genetic parameters and assessed the genomic prediction accuracy of boar semen traits with phenotypes evaluated from 274,332 ejections in a large population consisting of 2467 Duroc boars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!