Risk control and assessment of sulfide-rich sediment remediation by controlled-release calcium nitrate.

Water Res

Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China. Electronic address:

Published: November 2022

Nitrate stimulation is widely used in sediment remediation to eliminate sulfides, degrade organic pollutants and immobilize phosphorus. However, the environmental risks of nitrate escape and the subsequent release of pollutants (e.g. nitrite, ammonium and trace metals) to water bodies during its application has received less attention. In this study, controlled-release nitrate pellets (SedCaN pellets) were manufactured and applied at different sediment depths to examine their effectiveness in controlling the risk of nitrate escape and subsequent pollutant release. The germination of submerged plant was also analyzed to assess the ecological risks associated with the remediated sediment. The results showed that the SedCaN pellets slowly released calcium nitrate, which led to denitrifying sulfide oxidation, organic matter degradation and the immobilization of phosphorus as a calcium-bound species. Gas production by denitrification increased the sediment porosity (0.3-2.2%) and led to the concomitant release of nitrite, ammonium, and heavy metals, creating secondary risks. Application of the SedCaN pellets at depth decreased the nitrate escape and the secondary risks, presumably by means of a capping effect of the upper sediment. The release of nitrate, ammonium, Ni and Cu were partially limited by 91.6%, 19.0%, 61.6% and 57.4% when SedCaN pellets were incorporated into deeper sediments (7-9 cm). Moreover, the range of sulfide oxidation extended to the upper and lower sediments in the profile (column), while the sulfide oxidation efficiency reached 85.9-95.0%. Finally, increased germination of Bacopa monnieri (20.0-26%) demonstrated that in comparison to reference materials the ecological risks of the treated sediments was reduced and the habitat function of sediment was restored after nitrate-stimulating remediation. The results of this study provide valuable guidelines for nitrate-stimulating remediation of sulfide-rich (black-odor) sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119230DOI Listing

Publication Analysis

Top Keywords

sedcan pellets
16
nitrate escape
12
sulfide oxidation
12
sediment remediation
8
nitrate
8
calcium nitrate
8
escape subsequent
8
nitrite ammonium
8
ecological risks
8
secondary risks
8

Similar Publications

Risk control and assessment of sulfide-rich sediment remediation by controlled-release calcium nitrate.

Water Res

November 2022

Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China. Electronic address:

Nitrate stimulation is widely used in sediment remediation to eliminate sulfides, degrade organic pollutants and immobilize phosphorus. However, the environmental risks of nitrate escape and the subsequent release of pollutants (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!