Tailoring enzymatic loading capacity on 3D macroporous gold by catalytic hairpin assembly and hybridization chain reaction: Application for ultrasensitive self-powered microRNA detection.

Biosens Bioelectron

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.

Published: January 2023

It is important to develop effective strategies to construct enzymatic biofuel cell based self-powered biosensors. We report here the facile regulation of enzymatic loading capacity on the bioanode by utilizing a concatenated catalytic hairpin assembly (CHA)/hybridization chain reaction (HCR) and its application for self-powered microRNA-141 (miRNA-141) detection. To construct the bioanode, a concatenated CHA/HCR process triggered by miRNA-141 was conducted on the three-dimensional macroporous gold (3DMG) electrode to generate long double-stranded DNA nanowires for glucose oxidase immobilization. Quartz crystal microbalance study reveals that the enzymatic loading capacity on the bioanode increases at an increasing miRNA-141 concentration, leading to enhanced catalytic performance for glucose oxidation. The short-circuit currents of the assembled glucose/O biofuel cells increase at increasing miRNA-141 concentrations, enabling ultrasensitive detection of miRNA-141. The self-powered biosensor features a wide dynamic range for detecting miRNA-141 from 10 to 10 M, with an ultralow detection limit of 1.3 aM. This work provides a highly sensitive self-powered biosensing platform for miRNA detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114813DOI Listing

Publication Analysis

Top Keywords

enzymatic loading
12
loading capacity
12
macroporous gold
8
catalytic hairpin
8
hairpin assembly
8
chain reaction
8
capacity bioanode
8
increasing mirna-141
8
mirna-141
6
self-powered
5

Similar Publications

Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).

View Article and Find Full Text PDF

The application of extracellular vesicles (EVs) as therapeutics or nanocarriers in cell-free therapies necessitates meticulous evaluations of different features, including their identity, bioactivity, batch-to-batch reproducibility, and stability. Given the inherent heterogeneity in EV preparations, this assessment demands sensitive functional assays to provide key quality control metrics, complementing established methods to ensure that EV preparations meet the required functionality and quality standards. Here, we introduce the detectEV assay, an enzymatic-based approach for assessing EV luminal cargo bioactivity and membrane integrity.

View Article and Find Full Text PDF

Food waste (FW) is a common source of contamination, contaminating both soils and water bodies by releasing greenhouse gases. FW holds great potential for biofuel and bioproduct production, which can mitigate its environmental impact and become a valuable addition to the circular bioeconomy. Therefore, this work aimed to investigate the use of food waste as a substrate to produce fermentable sugars and bioethanol.

View Article and Find Full Text PDF

Antimicrobial Nanoparticles Composed of Zein and Arginine-Phenylalanine-Based Surfactants for Wound Related Infections: Antioxidant and Skin-Related Anti-Enzymatic Activities and Toxicity.

Antibiotics (Basel)

December 2024

Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain.

: Cationic surfactants are potential antimicrobial candidates. Even so, they are the foremost irritative and incompatible group, which limits their usage. The incorporation of surfactants in biopolymer-based nanoparticles is a feasible strategy to improve their efficacy and reduce those drawbacks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!