Magnetically induced current densities (MICDs) of Zn-porphyrinoid nanostructures have been studied at the density functional theory level using the B3LYP functional and the def2-SVP basis set. Six of the studied Zn-porphyrinoid nanostructures consist of two crossing porphyrinoid belts, and one is a porphyrinoid nanoball belonging to the octahedral () point group. The Zn-porphyrin units are connected to each other via butadiyne linkers as in a recently synthesized porphyrinoid structure resembling two crossed belts. The MICDs are calculated using the gauge-including magnetically induced current method. Current-density pathways and their strengths were determined by numerically integrating the MICD passing through selected planes that cross chemical bonds or molecular rings. The current-density calculations show that the studied neutral molecules are globally nonaromatic but locally aromatic sustaining ring currents only in the individual porphyrin rings or around two neighboring porphyrins. The ring-current strengths of the individual porphyrin rings are 20% weaker than in Zn-porphyrin, whereas oxidation leads to globally aromatic cations sustaining ring currents that are somewhat stronger than for Zn-porphyrin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639160 | PMC |
http://dx.doi.org/10.1021/acs.jpca.2c04856 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States.
The development of molecular species with switchable magnetic properties has been a long-standing challenge in chemistry. One approach involves binding an analyte, such as protons, to a compound to trigger a change in magnetism. Transition metal complexes have been targeted for this type of magnetic modulation because they can undergo changes in their spin states.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, 46010, Spain.
Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with liver cirrhosis, leading to neurotoxic effects and hepatic encephalopathy (HE). HE manifestations can range from mild, subclinical disturbances in cognition, or minimal HE (mHE) to gross disorientation and coma, a condition referred to as overt HE. Many blood-based biomarkers reflecting these neurotoxic effects of ammonia and liver disease can be measured in the blood allowing the development of new biomarkers to diagnose cirrhosis patients at risk of developing HE.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFSmall
January 2025
School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!