Interferometric measurements of an optically trapped exciton-polariton condensate reveal a regime where the condensate pseudo-spin precesses persistently within the driving optical pulse. For a single 20 μs optical pulse, the condensate pseudo-spin undergoes over 10^{5} full precessions with striking frequency stability. The emergence of the precession is traced to polariton nonlinear interactions that give rise to a self-induced out-of-plane magnetic field, which in turn drives the system spin dynamics. The Larmor precession frequency and trajectory are directly influenced by the condensate density, enabling the control of this effect with optical means. Our results accentuate the system's potential for the realization of magnetometry devices and can lead to the emergence of spin-squeezed polariton condensates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.155301 | DOI Listing |
Eur Phys J C Part Fields
November 2024
Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB R3B 2E9 Canada.
We report the performance of a magnetically silent optically pumped cesium magnetometer with a statistical sensitivity of 3.5 pT/ at 1 Hz and a stability of 90 fT over 150 s of measurement. Optical pumping with coherent, linearly-polarized, resonant light leads to a relatively long-lived polarized ground state of the cesium vapour contained in a measurement cell.
View Article and Find Full Text PDFNanoscale
November 2024
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
The coherent spin dynamics of electrons and holes in CsPbI perovskite nanocrystals in a glass matrix are studied by the time-resolved Faraday ellipticity technique in magnetic fields up to 430 mT across a temperature range from 6 K to 120 K. The Landé -factors and spin dephasing times are evaluated from the observed Larmor precession of electron and hole spins. The nanocrystal size in the three studied samples varies from about 8 to 16 nm, resulting in exciton transition varying from 1.
View Article and Find Full Text PDFEntropy (Basel)
August 2024
Department of Natural Sciences, Institute of Electrophysics, Kálmán Kandó Faculty of Electrical Engineering, Óbuda University, Tavaszmezőu. 17, H-1084 Budapest, Hungary.
In a Wilberforce pendulum, two mechanical oscillators are coupled: one pertains to the longitudinal (tension) motion and the other to the rotational (twisting) motion. It is shown that the longitudinal magnetic moment of circular currents, and similarly the magnetic moment of a spin-chain, can exhibit a Wilberforce-like vibration. The longitudinal oscillation is related to the Langevin diamagnetism, while the twisting motion is superimposed on the magnetic moment and spin precession.
View Article and Find Full Text PDFInstrum Sci Technol
November 2023
Department of Radiology, Weill Cornell Medicine, NY 10021, USA.
The concept of a 2D cylindrical High Pass Ladder (2D c-HPL) is used in the development of this ultra high radio frequency (UHRF) volumetric head coil for 7T tuned at the Larmor frequency of 298 MHz. The architecture of the 2D c-HPL helps to overcome the challenges associated with non-uniform magnetic field distribution. The prototype consists of an individual resonating array of inductance-capacitance (LC) elements and each component is tuned to the precise frequency.
View Article and Find Full Text PDFScience
May 2024
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA)-Universidad Nacional de Cuyo (UNCUYO), Bariloche 8400, Argentina.
Time crystals (TCs) are many-body systems that display spontaneous breaking of time translation symmetry. We demonstrate a TC by using driven-dissipative condensates of microcavity exciton-polaritons, spontaneously formed from an incoherent particle bath. The TC phases are controlled by the power of a continuous-wave nonresonant optical drive exciting the condensate and the interaction with cavity phonons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!