Disclinations-topological defects ubiquitously existing in various materials-can reveal the intrinsic band topology of the hosting material through the bulk-disclination correspondence. In low-dimensional materials and nanostructure such as graphene and fullerenes, disclinations yield curved surfaces and emergent non-Euclidean geometries that are crucial in understanding the properties of these materials. However, the bulk-disclination correspondence has never been studied in non-Euclidean geometry, nor in systems with p-orbital physics. Here, by creating p-orbital topological acoustic metamaterials with disclination-induced conic and hyperbolic surfaces, we demonstrate the rich emergent bound states arising from the interplay among the real-space geometry, the bulk band topology, and the p-orbital physics. This phenomenon is confirmed by clear experimental evidence that is consistent with theory and simulations. Our experiment paves the way toward topological phenomena in non-Euclidean geometries and will stimulate interesting research on, e.g., topological phenomena for electrons in nanomaterials with curved surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.154301 | DOI Listing |
Adv Mater
January 2025
National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Mechanical and Aerospace Engineering, University at Buffalo (State University of New York), Buffalo, NY 14260-4400.
Decades after being replaced with digital platforms, analogue computing has experienced a surging interest following developments in metamaterials and intricate fabrication techniques. Specifically, wave-based analogue computers which impart spatial transformations on an incident wavefront, commensurate with a desired mathematical operation, have gained traction owing to their ability to directly encode the input in its unprocessed form, bypassing analogue-to-digital conversion. While promising, these systems are inherently limited to single-task configurations.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Xi'an Key Laboratory of Extreme Environment and Protection Technology, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Tunable perfect acoustic absorption at subwavelength thickness has been a prominent topic in scientific research and engineering applications. Although metamaterials such as labyrinthine metasurfaces and coiling-up-space metamaterials can achieve subwavelength low-frequency acoustic absorption, efficiently realizing tunable absorption under uniform and limited size conditions remains challenging. In this paper, we introduce a folded slit to enhance the micro-slit acoustic absorber, effectively improving its low-frequency acoustic absorption performance and successfully achieving a perfect acoustic absorption coefficient of 0.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, USA.
Space-time modulation opens the door for unprecedented wave behavior control, such as nonreciprocal wave manipulation. Here is proposed a one-dimensional space-time modulated membrane system aiming to realize a kind of acoustic metamaterial with space-time modulated effective density. Three different approaches, namely, the effective medium method, transfer matrix method, and time-domain simulation, are applied to analyze the acoustic response of the system under a monochromatic incidence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!