Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Infection, trauma, and autoimmunity trigger tissue inflammation, often leading to pain and loss of function. Therefore, approaches to control inflammation based on nanotechnology principles are being developed in addition to available methods. The metal-based nanoparticles are particularly attractive due to the ease of synthesis, control over physicochemical properties, and facile surface modification with different types of molecules. Here, we report curcumin conjugated silver (Cur-Ag) nanoparticles synthesis, followed by their surface functionalization with isoniazid, tyrosine, and quercetin, leading to Cur-AgINH, Cur-AgTyr, and Cur-AgQrc nanoparticles, respectively. These nanoparticles possess radical scavenging capacity, haemocompatibility, and minimal cytotoxicity to macrophages. Furthermore, the nanoparticles inhibited the secretion of pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interleukin-1β from macrophages stimulated by lipopolysaccharide (LPS). The findings reveal that the careful design of surface corona of nanoparticles could be critical to increasing their efficacy in biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586410 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276296 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!