A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Triazol-Methanaminium-Pillar[5]arene-Functionalized Single Nanochannel for Quantitative Analysis of Pyrophosphate in Water. | LitMetric

Inorganic pyrophosphate (PPi) is an important biological functional anion and plays crucial roles in life science, environmental science, medicine, and chemical process. Quantification of PPi in water has far-reaching significance for life exploration, disease diagnosis, and water pollution control. The label-free quantitative detection of PPi anions with a nanofluidic sensing device based on a conical single nanochannel is demonstrated. The channel surface is functionalized with a synthetic PPi receptor, triazol-methanaminium-functionalized pillar[5]arene (TAMAP5), using carbodiimide coupling chemistry. Due to the specific binding between TAMAP5 and PPi, the functionalized nanochannel can discriminate PPi from other inorganic anions with high selectivity through ionic current recording, even in the presence of various interfering anions. The current response exhibits a linear correlation with PPi concentration in the range from 1 × 10 to 1 × 10 M with a limit of detection of 6.8 × 10 M. A spike-and-recovery analysis of PPi in East Lake water samples indicates that the proposed nanofluidic sensor has the ability to quantitate micromolar concentrations of PPi in environmental water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c02161DOI Listing

Publication Analysis

Top Keywords

ppi
9
single nanochannel
8
water samples
8
water
5
triazol-methanaminium-pillar[5]arene-functionalized single
4
nanochannel quantitative
4
quantitative analysis
4
analysis pyrophosphate
4
pyrophosphate water
4
water inorganic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!