Objectives: The study aimed to assess the efficiency of whole-body high-resolution compressed sensing-sensitivity encoding isotropic T1-Weighted Dixon (CSI-T1W-Dixon) scans in evaluating bone metastasis.

Methods: Forty-five high-risk prostate cancer patients with bone metastases were enrolled prospectively and underwent whole-body MRI sequences, which included the following: pre- and post-contrast CSI-T1W-Dixon and conventional multi-planar T1-Weighted Dixon (CMP-T1W-Dixon) (coronal, sagittal, and axial scans), short tau inversion recovery (STIR), and DWI. Comparison between the CMP-T1W-Dixon and CSI-T1W-Dixon images was done for the subjective image quality, the quantitative contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Furthermore, the diagnostic performance based on per-lesion and per-patient basis utilizing non-contrast T1-weighted (T1)/T1+ contrasted T1-weighted (T1C)/T1 + T1C + STIR + DWI sequences was compared between the CSI-T1W-Dixon and CMP-T1W-Dixon methods using reference standards (combining biopsy data and 6-month imaging follow-up).

Result: The CSI-T1W-Dixon images produced fewer image artifacts in the axial and coronal planes compared to the CMP-T1W-Dixon images. Also, the CSI-T1W-Dixon images provided better a CNR in fat-only images of all three planes and water-only images of the axial plane (p < 0.05). The CSI-T1W-Dixon showed a higher sensitivity than the CMP-T1W-Dixon techniques in analyzing T1-only images on a per-lesion basis (82.7% vs. 53.8% for sensitivity, p = 0.03). On a per-patient basis, no difference was found in the diagnostic capacity between the CSI-T1W-Dixon and CMP-T1W-Dixon sequences either alone or in combinations (p = 0.57-1).

Conclusion: High-resolution CSI-T1W-Dixon with higher image quality and diagnostic capacity can replace the CMP-T1W-Dixon method in evaluating bone metastasis in clinical practice.

Key Points: • Compressed sensing isotropic acquisition for 3D T1-weighted Dixon images can improve the image quality with fewer artifacts compared to the anisotropic multiplanar acquisition. • Compressed sensing isotropic acquisition can save 67% of scanning time compared to anisotropic multiplanar acquisition. • Compressed sensing isotropic 3D T1-weighted Dixon images can offer better diagnostic performance with higher sensitivity compared to anisotropic multiplanar images.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-022-09181-9DOI Listing

Publication Analysis

Top Keywords

t1-weighted dixon
20
isotropic t1-weighted
12
csi-t1w-dixon images
12
image quality
12
• compressed
12
compressed sensing
12
sensing isotropic
12
compared anisotropic
12
anisotropic multiplanar
12
images
10

Similar Publications

Muscle Contractility in Hypokalemic Periodic Paralysis.

Muscle Nerve

December 2024

Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Introduction/aims: Primary hypokalemic periodic paralysis (HypoPP) can present with periodic paralysis and/or permanent muscle weakness. Permanent weakness is accompanied by fat replacement of the muscle. It is unknown whether the permanent muscle weakness is solely due to fat replacement or if other factors affect the ability of the remaining muscle fibers to contract.

View Article and Find Full Text PDF

Background: Dixon-based magnetic resonance imaging (MRI) intramuscular proton density fat fraction (PDFF) is a potentially useful imaging biomarker of muscle quality. However, multi-vendor, multi-site reproducibility of intramuscular PDFF quantification, required for large clinical studies, can be strongly dependent on acquisition and processing. The purpose of this study was (I) to develop a 6-point Dixon MRI-based acquisition and processing technique for reproducible multi-vendor, multi-site quantification of thigh intramuscular PDFF; and (II) to evaluate the ability of the technique to detect differences in thigh muscle status between operated .

View Article and Find Full Text PDF

This study aims to assess the performances of T1‑weighted (T1W) and T2‑weighted (T2W) Dixon sequences as replacements for the standard magnetic resonance imaging (MRI) protocol for diagnosing active and chronic sacroiliitis. This single‑centre, prospective study included 107 patients who underwent 3 Tesla MRIs. The patients with inflammatory low‑back pain (aged 18-50 years) were included.

View Article and Find Full Text PDF

Development of an optimized MRI protocol for a rapid preoperative identification of sentinel lymph nodes using superparamagnetic iron oxide - The Gothenburg fast acquisition sentinel lymph node tracking magnetic resonance imaging protocol (GO-FAST-MRI).

Eur J Surg Oncol

January 2025

Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.

Introduction: Determining sentinel lymph node (SLN) status is important for treatment decisions in patients with melanoma. Superparamagnetic iron oxide nanoparticles (SPIO) combined with MRI have emerged as an alternative to Technetium lymphoscintigraphy for preoperative mapping of SLN, however, the MRI protocols so far are extensive with long in-camera time. This study aimed to evaluate an optimized MRI protocol for rapid identification of SLNs using SPIO as a tracer, without compromising diagnostic quality, the GOthenburg Fast Acquisition Sentinel lymph node Tracking MRI (GO-FAST-MRI).

View Article and Find Full Text PDF

Bone marrow is a dynamic organ with variable composition in relation to age or pathophysiological changes. Magnetic resonance imaging (MRI) is the technique of choice to assess the different components of the bone marrow based on the different information provided by the different characteristics of the MRI sequences. This article provides an overview of the MRI appearances of normal and abnormal bone marrow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!