Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The purpose of this study was to investigate the effects and mechanism of microRNA (miR)-92a-3p in retinal angiogenesis in vitro and in vivo.
Methods: The expression of miR-92a-3p was verified by real-time quantitative polymerase chain reaction (RT-qPCR). Agomir-92a-3p was intravitreally injected into the right eye on postnatal day 3 (P3), P5, and P8 in the mice, with the agomir-NC injected left eye as the control. At P7, P9, and P12, immunofluorescence was performed to examine the retinal superficial vascular plexus, deep vascular plexus, proliferation, and apoptosis in retinal vascular endothelial cells (ECs). Human retinal microvascular endothelial cells (HRMECs) were treated with mimic-NC and mimic-92a-3p, then the tube formation, cell migration, and wound healing assays were used to detect the effect of miR-92a-3p on retinal angiogenesis in vitro. Agomir-92a-3p was also intravitreally injected into the right eye of oxygen-induced retinopathy (OIR) mice at P12, with the agomir-NC injected left eye as the control, the neovascularization was observed by retinal flatmount staining with isolectin B4 at P17. Bioinformatics and high-throughput sequencing were performed to identify potential target genes of miR-92a-3p. RT-qPCR and Western blot were carried out to detect the expression of SGK3, p-GSK3β, GSK3β, Bcl-xL, and cleaved caspase-3 in the HRMECs and mouse retinas.
Results: The overexpression of miR-92a-3p inhibited the development of retinal superficial vascular plexus and deep vascular plexus, decreased the expression of Ki67, and increased the expression of cleaved caspase-3 in isolectin B4-labeled retinal vascular ECs. In vitro, the overexpression of miR-92a-3p markedly suppressed the tube formation, cell migration, and wound healing of cultured ECs. Overexpression of miR-92a-3p inhibited both in vivo and in vitro physiological angiogenesis by downregulating the expression of SGK3, p-GSK3β/GSK3β, and Bcl-xL. In addition, agomir-92a-3p inhibited the pathological retinal neovascularization of OIR mice, by targeting SGK3, p-GSK3β/GSK3β, and Bcl-xL.
Conclusions: The miR-92a-3p could affect retinal angiogenesis by targeting SGK3 pathway, suggesting that miR-92a-3p may be a potential anti-angiogenic factor for retinal vascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617502 | PMC |
http://dx.doi.org/10.1167/iovs.63.11.19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!