In Brief: Oocyte quality and its NAD+ level decrease with time during in vitro culture. This study shows that nicotinamide riboside (NR) supplementation improves early embryonic development potential in post-ovulatory oocytes by decreasing the reactive oxygen species (ROS) levels and reducing DNA damage and apoptosis which could potentially increase the success rate of assisted reproductive technology (ART).
Abstract: The quality of post-ovulatory oocytes deteriorates over time, impacting the outcome of early embryonic development during human ART. We and other groups have found that NAD+, a prominent redox cofactor and enzyme substrate, decreases in both aging ovaries and oocytes. In this study, we found that the NAD+ levels decreased in the post-ovulatory mouse oocytes during in vitro culture and this decrease was partly prevented by NR supplementation. NR treatmenty restored MII oocyte quality and enhanced the early embryonic development potential of post-ovulatory oocytes via alleviating mitochondrial dysfunction and maintaining normal spindle/chromosome structure. Also, treatment with NR decreased ROS levels and reduced DNA damage and apoptosis in post-ovulatory oocytes. Taken together, our findings indicated that NR supplementation increases the oocyte quality and early embryonic development potential in post-ovulatory oocytes which could potentially increase the success rate of ART.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-22-0095 | DOI Listing |
Mol Cell Proteomics
November 2024
State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China. Electronic address:
Once ovulated, the oocyte has to be fertilized in a short time window or it will undergo post-ovulation aging (POA), whose underlying mechanisms are still not elucidated. Here, we optimized single-cell proteomics methods and performed single-cell transcriptomic, proteomic, and phosphoproteomic analysis of fresh, POA, and melatonin-treated POA oocytes. POA oocytes showed downregulation of most differentially expressed proteins, with little correlation with mRNA expression, and the protein changes can be rescued by melatonin treatment.
View Article and Find Full Text PDFJ Fish Biol
October 2024
Laboratorio de Bioquímica de la Reproducción, Dpto. Producción Agrícola y Animal, Universidad Autónoma Metropolitana, unidad Xochimilco, Coyoacán, Mexico.
Batch spawner fishes develop successive clutches of oocytes which allows them to participate in many reproductive cycles during their adult life (iteroparous) and spawn in multiple events within each breeding cycle. Here, ovarian follicular development was morpho-functionally analyzed in females of the iteroparous batch spawner fish Gymnocorymbus ternetzi. To obtain better insights into the reproductive morpho-physiology in batch spawners, the objective of this research was to analyze the dynamics of the follicular development, with its hormonal regulation between two active reproduction events.
View Article and Find Full Text PDFAntioxidants (Basel)
July 2024
Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea.
Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA.
View Article and Find Full Text PDFFront Vet Sci
June 2024
Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia.
Introduction: Post-ovulatory aging is a time-dependent deterioration of ovulated oocytes and a major limiting factor reducing the fitness of offspring. This process may lead to the activation of cell death pathways like apoptosis in oocytes.
Methodology: We evaluated oocyte membrane integrity, egg developmental competency, and mRNA abundance of apoptosis-related genes by RT-qPCR.
Adv Sci (Weinh)
September 2024
National Center for International Research on Animal Genetics, Breeding and Reproduction / Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
Ovulation is vital for successful reproduction. Following ovulation, cumulus cells and oocyte are released, while mural granulosa cells (mGCs) remain sequestered within the post-ovulatory follicle to form the corpus luteum. However, the mechanism underlying the confinement of mGCs has been a longstanding mystery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!