strain UCCM 00009 produced a mixture of gelatinase and keratinase to facilitate feather degradation but concomitant production of prodigiosin could make waste feather valorization biotechnologically more attractive. This article describes prodigiosin fermentation through co-valorization of waste feather and waste frying peanut oil by UCCM 00009 for anticancer, antioxidant, and esthetic applications. The stochastic conditions for waste feather degradation (WFD), modeled by multi-objective particle swarm-embedded-neural network optimization (ANN-PSO), revealed a gelatinase/keratinase ratio of 1.71 for optimal prodigiosin production and WFD. Luedeking-Piret kinetics revealed a non-exclusive, non-growth-associated prodigiosin yield of 9.66 g/L from the degradation of 88.55% waste feather within 96 h. The polyethylene glycol (PEG) 6000/Na citrate aqueous two-phase system-purified serratiopeptidase demonstrated gelatinolytic and keratinolytic activities that were stable for 240 h at 55 °C and pH 9.0. evaluations revealed that the prodigiosin inhibited methicillin-resistant at IC of 4.95 µg/mL, the plant-pathogen, at IC of 2.58 µg/mL, breast carcinoma at IC of 0.60 µg/mL and 2,2-diphenyl-1-picryl-hydrazyl hydrate (DPPH) free-radical at IC of 96.63 µg/mL). The pigment also demonstrated commendable textile dyeing potential of fiber and cotton fabrics. The technology promises cost-effective prodigiosin development through sustainable waste feather-waste frying oil co-management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10826068.2022.2134891 | DOI Listing |
Int J Biol Macromol
January 2025
Biomaterials Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan. Electronic address:
The global rise of bacterial resistance demands innovative strategies to enhance antibiotic efficacy. This study investigates keratin nanoparticles (KNPs) derived from waste chicken feathers as sustainable drug carriers. Antibacterial activity of KNPs was evaluated against Staphylococcus aureus and Escherichia coli using antibacterial sensitivity assays, including disc diffusion and minimum inhibitory concentration tests, while cytotoxicity was evaluated on human lymphoma cells.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey. Electronic address:
Recycling of protein-rich environmental wastes and obtaining more valuable products from these recycled products is a topic of interest for researchers. This study aims to produce, purify, and characterize the physicochemical and structural properties of the protease enzyme produced from Brevibacillus agri SAR25 using salmon fish waste as substrate and also to evaluate the effect of protease on the chicken feather, enzyme-ligand interactions, and active site surface area. The production of protease was optimum on 50 g/L fish waste, pH 8, 40 °C, 96 h, and 150 rpm.
View Article and Find Full Text PDFMolecules
December 2024
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
Discarded sports waste faces bottlenecks in application due to inadequate disposal measures, and there is often a neglect of enhancing resource utilization efficiency and minimizing environmental impact. In this study, nanoporous biochar was prepared through co-hydrothermal carbonization (co-HTC) and pyrolytic activation by using mixed goose feathers and heavy-metals-contaminated pine sawdust. Comprehensive characterization demonstrated that the prepared M-3-25 (Biochar derived from mixed feedstocks (25 mg/g Cu in pine sawdust) at 700 °C with activator ratios of 3) possesses a high specific surface area 2501.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China.
Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner.
View Article and Find Full Text PDFRecently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!