The rate-limiting step for diagnostics development is the discovery and validation of biomarker analytes. We describe a new analyte-agnostic and label-free approach based on colorimetric reactions involving type I polymerization photoinitiators. We demonstrate that a chemically diverse array of hydrogels embedded with cleaved type I photoinitiators could act as microreactors, undergoing colorimetric reactions with bound analytes. The colorimetric signatures produced were visually distinctive and readable with a flatbed document scanner. Signatures of a broad range of sample types were accurately differentiated by unsupervised clustering without knowledge of any analytes bound to the array. The principles described have the potential to enable scalable and cost-effective analysis of complex samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2an01615jDOI Listing

Publication Analysis

Top Keywords

colorimetric reactions
8
colorimetric
4
colorimetric chemical
4
chemical tongue
4
tongue detects
4
detects distinguishes
4
distinguishes multiple
4
analytes
4
multiple analytes
4
analytes rate-limiting
4

Similar Publications

Impact of cerium doping on the peroxidase-like activity of metal-organic frameworks.

Dalton Trans

January 2025

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.

Hydrogen peroxide, phenols, amines, aldehydes, and other substances can easily damage intracellular biomacromolecules. Although natural peroxidases can convert these harmful substances into benign ones, the high costs, poor stabilities, and stringent application conditions associated with these enzymes necessitate the exploration of artificial mimics. In this study, Ce-doped MIL-101(Fe)-NH and MIL-101(Fe)-NO were synthesized with varying compositions a solvothermal method.

View Article and Find Full Text PDF

Herein, the miniaturized thermal purge-and-trap (MTPT) device combined with self-calibration colorimetric/surface-enhanced Raman spectroscopy (SERS) dual-model optical sensors were designed for effective analysis of sulfur dioxide (SO) in wine. The SO can be rapidly separated from wine and enriched by MTPT device, ensuring colorimetric/SERS dual-model optical sensing based on Karl Fischer reaction. The high separation efficiency of miniaturized MTPT device combined with self-calibration of dual-model optical sensors significantly alleviate matrix interference and improve the detection accuracy.

View Article and Find Full Text PDF

Quantitative analysis of As(V) in rice is of great significance for food safety and heavy metal pollution control. Here, a facile colorimetric method for As(V) detection was constructed by using immobilized acid phosphatase (ACP) in hollow metal-organic frameworks hybrid. Metalloporphyrin and gold nanoparticles modified hollow zeolite imidazole framework-8 [Au/HZIF-8@TCPP(Fe)], named AuHT, was chosen here as ACP immobilizing carrier with peroxidase-like activity.

View Article and Find Full Text PDF

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF

A competitive dual-mode for tetracycline antibiotics sensing based on colorimetry and surface-enhanced Raman scattering.

Biosens Bioelectron

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China. Electronic address:

Tetracycline antibiotics (TCs) are extensively used as broad-spectrum antimicrobials. However, their excessive use and misuse have led to serious accumulation in foods and environments, posing a significant threat to human health. To solve such public issue, we have designed a novel dual-mode detection method, integrating colorimetric sensing with surface-enhanced Raman scattering (SERS) technology, for sensitive and rapid evaluation on TCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!