Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional (2D) material photodetectors have received considerable attention in optoelectronics as a result of their extraordinary properties, such as passivated surfaces, strong light-matter interactions, and broad spectral responses. However, single 2D material photodetectors still suffer from low responsivity, large dark current, and long response time as a result of their atomic-level thickness, large binding energy, and susceptibility to defects. Here, a transition metal trichalcogenide TiS with excellent photoelectric characteristics, including a direct bandgap (1.1 eV), high mobility, high air stability, and anisotropy, is selected to construct a type-II heterojunction with few-layer MoS, aiming to improve the performance of 2D photodetectors. An ultrahigh photoresponsivity of the TiS/MoS heterojunction of 48 666 A/W at 365 nm, 20 000 A/W at 625 nm, and 251 A/W at 850 nm is achieved under light-emitting diode illumination. The response time and dark current are 2 and 3 orders of magnitude lower than those of the current TiS photodetector with the highest photoresponsivity (2500 A/W), respectively. Furthermore, polarized four-wave mixing spectroscopy and polarized photocurrent measurements verify its polarization-sensitive characteristics. This work confirms the excellent potential of TiS/MoS heterojunctions for air-stable, high-performance, polarization-sensitive, and multiband photodetectors, and the excellent type-II TiS/MoS heterojunction system may accelerate the design and fabrication of other 2D functional devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c12332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!