Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the progressive defossilization of our industry, hydrogen (H ) has been identified as a central molecule to store renewable electricity. In this context, ammonia (NH ) is now rapidly emerging as a promising hydrogen carrier for the future. This game change indirectly impacts the field of fine chemistry where hydrogenation reactions are widely deployed. In particular, the possibility of performing hydrogenation reactions using ammonia directly instead of hydrogen has become highly desirable but it remains a very difficult scientific task, which we address in this communication. Here we show that the N-H bond of NH can be cleaved within cavitation bubbles, generated by ultrasonic irradiation at a high frequency, leading to the in situ formation of a diimide, which then induces the hydrogenation of alkenes. Advantageously, this work does not involve any transition metal and releases N as a sole co-product.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099763 | PMC |
http://dx.doi.org/10.1002/anie.202212719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!