Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes type 2 (T2DM) is a common chronic disease, increasingly leading to many complications and affecting vital organs. Hyperglycemia is the main characteristic caused by insufficient insulin secretion and poses a serious risk to human health. The objective is to construct a type-2 diabetes prediction model with high classification accuracy. Advanced machine learning and predictive model techniques are utilized to achieve cutting-edge techniques for the early diagnosis of diabetes. This paper proposes an efficient performance model to predict and classify the minority class of type-2 diabetes. The impact of oversampling and undersampling approaches to reduce the effect of an unbalanced clas has been compared to classification performance algorithms. Synthetic Minority Oversampling (SMOTE) and Tomek-links techniques are applied and examined. The outcomes were then compared to the original unbalanced dataset using an artificial neural network (ANN) predictive model. The model is compared with other state-of-the-art classifiers such as support vector machine (SVM), random forest (RF), and decision tree (DT). The tuned model had the best accuracy of 92.2%. The experimental findings clearly manifest the improvement in accuracy and evaluation metrics in terms of AUC and F1-measure using the SMOTE oversampling strategy rather than the baseline and undersampling schemes. The study recommends adopting dynamic hyperparameter optimization to further improve accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578843 | PMC |
http://dx.doi.org/10.1155/2022/3078025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!