Cerebral cavernous malformations (CMs) are slow-flow vascular lesions that affect up to 0.5% of the pediatric population. These lesions are at risk for hemorrhage, causing seizures, and leading to neurological deficits. Here, we conduct a literature review and then present a report of a supratentorial CM in a 2-year-old patient with no significant past medical history who presented at our institution with 1 month of eye twitching. We performed a literature search of five databases of all articles published before 2020. Our inclusion criteria included cohort and case series of children with mean age under 12 years. Our search yielded 497 unique articles, of which 16 met our inclusion criteria. In our pooled literature analysis, a total of 558 children were included, 8.3% of which had a positive family history and 15.9% had multiple CMs. About 46.1% of the children had seizures, and 88.4% of those who underwent surgery had a total resection. About 85.1% of those with epilepsy were Engel Class 1 postsurgery. Over a mean follow-up of 4.1 years, 3.4% of patients had additional neurological deficits, including paresis and speech deficits. Our analysis of published literature shows surgical intervention should be considered first-line therapy for patients who are symptomatic from CM, present with seizure, and have surgically accessible lesions. Additional work is needed on outcomes and long-term effects of minimally invasive treatments, including radiosurgery and laser ablation, in pediatric populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578313 | PMC |
http://dx.doi.org/10.4103/bc.bc_26_22 | DOI Listing |
Cell Commun Signal
January 2025
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Surgery, Section of Neurosurgery, Aga Khan University, Karachi, Pakistan.
Background: Intracranial arteriovenous malformations (AVMs) are extremely rare in the pediatric population, with an estimated prevalence of 0.014-0.028%.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Neurosurgery, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, China.
Traumatic direct type carotid cavernous fistula (CCF) is an acquired arteriovenous shunt between the carotid artery and the cavernous sinus post severe craniofacial trauma or iatrogenic injury. We reported a 46-year-old woman who had developed a traumatic direct type CCF after severe head trauma with a skull base fracture and brain contusion hemorrhage. The clinical manifestations of the patient included pulsatile exophthalmos, proptosis, bruits, chemosis, and a decline in consciousness.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
: Cerebral cavernous malformations (CCMs), particularly when located in the cerebellum, pose unique clinical challenges due to the risk of hemorrhage and proximity to critical neurovascular structures. Surgical resection is often necessary to prevent further neurological deterioration. This case report describes the management of a symptomatic cerebellar cavernoma, emphasizing the use of microsurgical techniques and long-term follow-up.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!