Cerebral amyloid angiopathy is a small vessel disease associated with cortical microbleeds and lobar intracerebral haemorrhage due to amyloid-β deposition in the walls of leptomeningeal and cortical arterioles. The mechanisms of cerebral amyloid angiopathy-related haemorrhage remain largely unknown. Recent work has demonstrated that ruptured blood vessels have limited (or no) amyloid-β at the site of bleeding and evidence of local vascular remodelling. We hypothesized that blood-brain barrier leakage and perivascular inflammation may be involved in this remodelling process. This study examined cortical arterioles at various stages of cerebral amyloid angiopathy-related vascular pathology (without evidence of microhaemorrhage) in autopsy tissue from seven cases with definite cerebral amyloid angiopathy. We included temporo-occipital sections with microbleeds guided by MRI from two cases with severe cerebral amyloid angiopathy and systematically sampled occipital sections from five consecutive cases with varying cerebral amyloid angiopathy severity. Haematoxylin and eosin stains and immunohistochemistry against amyloid-β, fibrin(ogen), smooth muscle actin, reactive astrocytes (glial fibrillary acidic protein) and activated microglia (cluster of differentiation 68) were performed. Arterioles were graded using a previously proposed scale of individual vessel cerebral amyloid angiopathy severity, and a blinded assessment for blood-brain barrier leakage, smooth muscle actin and perivascular inflammation was performed. Blood-brain barrier leakage and smooth muscle actin loss were observed in significantly more vessels with mild amyloid-β deposition (Grade 1 vessels; = 0.044 and = 0.012, respectively) as compared to vessels with no amyloid-β (Grade 0), and blood-brain barrier leakage was observed in 100% of vessels with evidence of vessel remodelling (Grades 3 and 4). Perivascular inflammation in the form of reactive astrocytes and activated microglia was observed predominantly surrounding arterioles at later stages of vessel pathology (Grades 2-4) and consistently around vessels with the same morphological features as ruptured vessel segments (Grade 4). These findings suggest a role for blood-brain barrier leakage and perivascular inflammation leading to arteriolar remodelling and haemorrhage in cerebral amyloid angiopathy, with early blood-brain barrier leakage as a potential trigger for subsequent perivascular inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576155PMC
http://dx.doi.org/10.1093/braincomms/fcac245DOI Listing

Publication Analysis

Top Keywords

cerebral amyloid
36
blood-brain barrier
28
barrier leakage
28
amyloid angiopathy
28
perivascular inflammation
24
leakage perivascular
12
smooth muscle
12
muscle actin
12
cerebral
9
amyloid
9

Similar Publications

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.

Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Eli Lilly and Company, Indianapolis, IN, USA.

Background: Anti-amyloid-β (Aβ) immunotherapy trials have shown amyloid-related imaging abnormalities (ARIA) as the most common and serious adverse events linked to pathological changes in cerebral vasculature. Nevertheless, the mechanisms underlying how amyloid immunotherapy triggers vascular damage, increases vascular permeability, and results in microhemorrhages remains unclear. Notably, activation of perivascular macrophages and infiltration of peripheral immune cells have been implicated in regulating cerebrovascular damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!