Neurons in paravertebral sympathetic ganglia are innervated by converging nicotinic synapses of varying strength. Based upon intracellular recordings of excitatory postsynaptic potentials (EPSPs) with sharp microelectrodes these synapses were classified in the past as either primary (strong) or secondary (weak) by their ability to trigger postsynaptic action potentials. Here we present an analysis of 22 synapses whose strength straddled threshold, thereby distinguishing them from the original classification scheme for primary and secondary synapses. Recordings at 36°C were made from intact superior cervical ganglia isolated from 13 male and 3 female Sprague-Dawley rats and from 4 male spontaneously hypertensive (SHR) rats. Ganglia were pretreated with collagenase to permit patch recording. By dissecting a 1 cm length of the presynaptic cervical sympathetic nerve as part of the preparation and through use of graded presynaptic stimulation it was possible to fractionate synaptic inputs by their distinct latencies and magnitudes, and by the presynaptic stimulus threshold for each component. Comparison of cell-attached extracellular recordings with intracellular recordings of synaptic potentials and synaptic currents indicated that straddling EPSPs are not an artifact of shunting damage caused by intracellular recording. The results also showed that in cells where a single presynaptic shock elicits multiple action potentials, the response is driven by multiple synapses and not by repetitive postsynaptic firing. The conductance of straddling synapses also provides a direct estimate of the threshold synaptic conductance (9.8 nS ± 7.6 nS, = 22, mean ± SD). The results are discussed in terms of their implications for ganglionic integration and an existing model of synaptic amplification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9577239 | PMC |
http://dx.doi.org/10.3389/fnins.2022.869753 | DOI Listing |
Toxins (Basel)
November 2024
Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France.
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.
Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.
View Article and Find Full Text PDFHeliyon
March 2024
School of Basic Medicine, Heilongjiang University Of Chinese Medicine, Harbin, 150040, China.
Ethnopharmacological Relevance: Alzheimer's disease (AD) is an incurable neurodegenerative disease that has become one of the most important diseases threatening global public health security. Dihuang Yinzi (DHYZ) is a traditional Chinese medicine that has been widely used for the treatment of AD and has significant therapeutic effects, but its specific mechanism of action is still unclear.The aim of the study is to investigate the specific mechanism of DHYZ in treating AD based on brain metabolomics and network pharmacology.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal; Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP/RISE-Health), Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal. Electronic address:
Nicotinic α7 receptors (α7 nAChRs) present in perisynaptic Schwann cells (PSCs) control acetylcholine (ACh) spillover from the neuromuscular synapse by transiently increasing intracellular Ca, which fosters adenosine release via type 1 equilibrative nucleoside transporters (ENT1) and retrograde activation of presynaptic A inhibitory receptors. The putative Ca-dependent pathways downstream α7 nAChRs involved in the sensing inhibitory drive operated by PSCs is unknown. Herein, we used phrenic nerve-hemidiaphragm preparations from Wistar rats.
View Article and Find Full Text PDFJ Cell Sci
December 2024
Department of Molecular, Cellular and Developmental Biology, 1105 N. University Avenue, Ann Arbor, MI 48109, USA.
The muscle-specific microRNA miR-206 has recently emerged as a potential regulator of genes involved in the formation and regeneration of the neuromuscular junction (NMJ). This study investigated miR-206-3p (miR-206) expression in synaptic and non-synaptic regions of denervated mice and α-dystrobrevin (Dtna)-knockout mice, as well as its impact on the formation and/or maintenance of agrin-induced acetylcholine receptor (AChR) clusters. In denervated, Dtna-deficient and crushed muscles, miR-206 expression significantly increased compared to what was seen for innervated muscles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!