Objective: To carry out exhaustive data-driven computations for the performance of noninvasive vital signs heart rate (HR), respiratory rate (RR), peripheral oxygen saturation (SpO), and temperature (Temp), considered both independently and in all possible combinations, for early detection of sepsis.

Materials And Methods: By extracting features interpretable by clinicians, we applied Gradient Boosted Decision Tree machine learning on a dataset of 2630 patients to build 240 models. Validation was performed on a geographically distinct dataset. Relative to onset, predictions were clocked as per 16 pairs of monitoring intervals and prediction times, and the outcomes were ranked.

Results: The combination of HR and Temp was found to be a minimal feature set yielding maximal predictability with area under receiver operating curve 0.94, sensitivity of 0.85, and specificity of 0.90. Whereas HR and RR each directly enhance prediction, the effects of SpO and Temp are significant only when combined with HR or RR. In benchmarking relative to standard methods Systemic Inflammatory Response Syndrome (SIRS), National Early Warning Score (NEWS), and quick-Sequential Organ Failure Assessment (qSOFA), Vital-SEP outperformed all 3 of them.

Conclusion: It can be concluded that using intensive care unit data even 2 vital signs are adequate to predict sepsis upto 6 h in advance with promising accuracy comparable to standard scoring methods and other sepsis predictive tools reported in literature. Vital-SEP can be used for fast-track prediction especially in limited resource hospital settings where laboratory based hematologic or biochemical assays may be unavailable, inaccurate, or entail clinically inordinate delays. A prospective study is essential to determine the clinical impact of the proposed sepsis prediction model and evaluate other outcomes such as mortality and duration of hospital stay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566305PMC
http://dx.doi.org/10.1093/jamiaopen/ooac080DOI Listing

Publication Analysis

Top Keywords

combinations early
8
early warning
8
machine learning
8
vital signs
8
performance effectiveness
4
effectiveness vital
4
vital parameter
4
parameter combinations
4
warning sepsis-an
4
sepsis-an exhaustive
4

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Rationale: Thrombus is the most common occupying lesion in the cardiac chambers, it is often distinguished from cardiac neoplastic occupations. Among them, the most common is cardiac myxoma, whose imaging manifestations are often confused with thrombus. However, the 2 types of lesions have different therapeutic strategies and are both potentially high-risk sources of embolism, so early differentiation between intracardiac thrombus and cardiac tumor is essential.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Background: To assess the impact of attaining aggressive beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) targets on clinical efficacy in critical orthotopic liver transplant (OLT) recipients with documented early Gram-negative infections.

Methods: OLT recipients admitted to the post-transplant ICU between June 2021 and May 2024 having documented Gram-negative infections treated with targeted therapy continuous infusion (CI) beta-lactams, and undergoing therapeutic drug monitoring (TDM)-guided beta-lactam dosing adjustment in the first 72 hours were prospectively enrolled. Free steady-state concentrations (fCss) of beta-lactams (BL) and/or of beta-lactamase inhibitors (BLI) were calculated, and aggressive PK/PD target attainment was measured.

View Article and Find Full Text PDF

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!