A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extractable work in quantum electromechanics. | LitMetric

Extractable work in quantum electromechanics.

Phys Rev E

Department of Physics, Trinity College Dublin, Dublin 2, Ireland.

Published: September 2022

Recent experiments have demonstrated the generation of coherent mechanical oscillations in a suspended carbon nanotube, which are driven by an electric current through the device above a certain voltage threshold, in close analogy with a lasing transition. We investigate this phenomenon from the perspective of work extraction, by modeling a nanoelectromechanical device as a quantum flywheel or battery that converts electrical power into stored mechanical energy. We introduce a microscopic model that qualitatively matches the experimental finding, and we compute the Wigner function of the quantum vibrational mode in its nonequilibrium steady state. We characterize the threshold for self-sustained oscillations using two approaches to quantifying work deposition in nonequilibrium quantum thermodynamics: the ergotropy and the nonequilibrium free energy. We find that ergotropy serves as an order parameter for the phonon lasing transition. The framework we employ to describe work extraction is general and widely transferable to other mesoscopic quantum devices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.L032104DOI Listing

Publication Analysis

Top Keywords

lasing transition
8
work extraction
8
quantum
5
extractable work
4
work quantum
4
quantum electromechanics
4
electromechanics experiments
4
experiments demonstrated
4
demonstrated generation
4
generation coherent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!