One-dimensional particle chains are fundamental models to explain anomalous thermal conduction in low-dimensional solids such as nanotubes and nanowires. In these systems the thermal energy is carried by phonons, i.e., propagating lattice oscillations that interact via nonlinear resonance. The average energy transfer between the phonons can be described by the wave kinetic equation, derived directly from the microscopic dynamics. Here we use the spatially nonhomogeneous wave kinetic equation of the prototypical β-Fermi-Pasta-Ulam-Tsingou model, to study thermal conduction in one-dimensional particle chains on a mesoscale description. By means of numerical simulations, we study two complementary aspects of thermal conduction: in the presence of thermostats setting different temperatures at the two ends and propagation of a temperature perturbation over an equilibrium background. Our main findings are as follows. (i) The anomalous scaling of the conductivity with the system size, in close agreement with the known results from the microscopic dynamics, is due to a nontrivial interplay between high and low wave numbers. (ii) The high-wave-number phonons relax to local thermodynamic equilibrium transporting energy diffusively, in the manner of Fourier. (iii) The low-wave-number phonons are nearly noninteracting and transfer energy ballistically. These results present perspectives for the applicability of the full nonhomogeneous wave kinetic equation to study thermal propagation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.034110 | DOI Listing |
Phys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Physics, Indian Institute of Science Education and Research Bhopal, Bypass Road Bhauri, Bhopal, 462066, INDIA.
We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus asymptotically leads towards localization.
View Article and Find Full Text PDFNano Lett
January 2025
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory.
View Article and Find Full Text PDFJ Chromatogr A
February 2025
Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, United States. Electronic address:
Determination of quality attributes of antisense oligonucleotides (ASOs) such as purity, potency, and sequence is challenging due to their relatively large size, polyanionic nature, and large number of synthetic modifications. Chromatography technologies are evolving rapidly to meet these challenges, and one area of particularly rapid change at this time is the use of hydrophilic interaction liquid chromatography (HILIC) for oligonucleotide (ON) separations. Relatively little has been published on the factors that dictate the kinetics of these separations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!