Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many previous studies have demonstrated that work statistics can exhibit certain singular behaviors in the quantum critical regimes of many-body systems at zero or very low temperatures. However, as the temperature increases, it is commonly believed that such singularities will vanish. Contrary to this common recognition, we report a nonanalytic behavior of the averaged work done, which occurs at finite temperature, in the Dicke model as well as the Lipkin-Meshkov-Glick model subjected to the sudden quenches of their work parameters. It is revealed that work statistics can be viewed as a signature of the thermal phase transition when the quenched parameters are tuned across the critical line that separates two different thermal phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.034104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!