We explore the effect of stochastic resetting on the first-passage properties of the Feller process. The Feller process can be envisioned as space-dependent diffusion, with diffusion coefficient D(x)=x, in a potential U(x)=x(x/2-θ) that owns a minimum at θ. This restricts the process to the positive side of the origin and therefore, Feller diffusion can successfully model a vast array of phenomena in biological and social sciences, where realization of negative values is forbidden. In our analytically tractable model system, a particle that undergoes Feller diffusion is subject to Poissonian resetting, i.e., taken back to its initial position at a constant rate r, after random time epochs. We addressed the two distinct cases that arise when the relative position of the absorbing boundary (x_{a}) with respect to the initial position of the particle (x_{0}) differ, i.e., for (a) x_{0}
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.034133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!