We investigate how site dilution, as would be introduced by immunization, affects the properties of the active-to-absorbing nonequilibrium phase transition in the paradigmatic susceptible-infectious-recovered (SIR) model on regular cubic lattices. According to the Harris criterion, the critical behavior of the SIR model, which is governed by the universal scaling exponents of the dynamic isotropic percolation (DyIP) universality class, should remain unaltered after introducing impurities. However, when the SIR reactions are simulated for immobile agents on two- and three-dimensional lattices subject to quenched disorder, we observe a wide crossover region characterized by varying effective exponents. Only after a sufficient increase of the lattice sizes does it become clear that the SIR system must transition from that crossover regime before the effective critical exponents asymptotically assume the expected DyIP values. We attribute the appearance of this exceedingly long crossover to a time lag in a complete recovery of small disconnected clusters of susceptible sites, which are apt to be generated when the system is prepared with Poisson-distributed quenched disorder. Finally, we demonstrate that this transient region becomes drastically diminished when we significantly increase the value of the recovery rate or enable diffusive agent mobility through short-range hopping.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.034132DOI Listing

Publication Analysis

Top Keywords

nonequilibrium phase
8
phase transition
8
sir model
8
quenched disorder
8
effects lattice
4
lattice dilution
4
dilution nonequilibrium
4
transition stochastic
4
stochastic susceptible-infectious-recovered
4
susceptible-infectious-recovered model
4

Similar Publications

Thermostat-induced artificial lane formation in non-equilibrium molecular dynamics.

J Chem Phys

January 2025

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.

While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.

View Article and Find Full Text PDF

Hidden domain boundary dynamics toward crystalline perfection.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.

View Article and Find Full Text PDF

High-entropy alloys (HEAs) with ultrafine grained and high strength can be prepared by mechanical alloying (MA) followed by sintering. Therefore, MA, as a unique solid powder processing method, has many effects on the microstructures and mechanical properties of the sintered bulk HEAs. This work focused on the alloying behavior, morphology, and phase evolution of FeCrNiAl (x = 1.

View Article and Find Full Text PDF

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Spatiotemporal patterns in active four-state Potts models.

Sci Rep

January 2025

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.

Many types of spatiotemporal patterns have been observed under nonequilibrium conditions. Cycling through four or more states can provide specific dynamics, such as the spatial coexistence of multiple phases. However, transient dynamics have only been studied by previous theoretical models, since absorbing transition into a uniform phase covered by a single state occurs in the long-time limit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!