In this article we develop an algorithm for the efficient simulation of electrolytes in the presence of physical boundaries. In previous work the discrete ion stochastic continuum overdamped solvent (DISCOS) algorithm was derived for triply periodic domains, and was validated through ion-ion pair correlation functions and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong electric fields. In extending this approach to include an accurate treatment of physical boundaries we must address several important issues. First, the modifications to the spreading and interpolation operators necessary to incorporate interactions of the ions with the boundary are described. Next we discuss the modifications to the electrostatic solver to handle the influence of charges near either a fixed potential or dielectric boundary. An additional short-ranged potential is also introduced to represent interaction of the ions with a solid wall. Finally, the dry diffusion term is modified to account for the reduced mobility of ions near a boundary, which introduces an additional stochastic drift correction. Several validation tests are presented confirming the correct equilibrium distribution of ions in a channel. Additionally, the methodology is demonstrated using electro-osmosis and induced-charge electro-osmosis, with comparison made to theory and other numerical methods. Notably, the DISCOS approach achieves greater accuracy than a continuum electrostatic simulation method. We also examine the effect of under-resolving hydrodynamic effects using a "dry diffusion" approach, and find that considerable computational speedup can be achieved with a negligible impact on accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.035104 | DOI Listing |
Chem Asian J
January 2025
Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA.
The two-fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene, 1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C-C bond converts the central eight-membered ring into a twisted core with two fused five-membered rings. This C-C bond of 1.589(3)-1.
View Article and Find Full Text PDFHeliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, VIT University, Tamilnadu, 632014, India.
Polymers (Basel)
December 2024
Department of Chemical Sciences, Federico II University of Naples, via Cinthia, 80126 Napoli, Italy.
Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, (nBuCp)ZrCl, in the oligomerization of 1-octene was thoroughly investigated; in particular, the molecular weight distribution (MWD) of the oligomers was determined by means of high-resolution high performance liquid chromatography (HR-HPLC).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!