Using combinatorial optimization techniques we study the critical properties of the two- and three-dimensional Ising models with uniformly distributed random antiferromagnetic couplings (1≤J_{i}≤2) in the presence of a homogeneous longitudinal field, h, at zero temperature. In finite systems of linear size, L, we measure the average correlation function, C_{L}(ℓ,h), when the sites are either on the same sublattice, or they belong to different sublattices. The phase transition, which is of first order in the pure system, turns to mixed order in two dimensions with critical exponents 1/ν≈0.5 and η≈0.7. In three dimensions we obtain 1/ν≈0.7, which is compatible with the value of the random-field Ising model, but we cannot discriminate between second-order and mixed-order transitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.034117 | DOI Listing |
Pharmacopsychiatry
January 2025
Max Planck Institute of Psychiatry, Munich, Germany.
A subgroup of patients with acute depression show an impaired regulation of the hypothalamic-pituitary-adrenocortical axis, which can be sensitively diagnosed with the combined dexamethasone (dex)/corticotropin releasing hormone (CRH)-test. This neuropathological alteration is assumed to be a result of hyperactive AVP/V1b signalling. Given the complicated procedure of the dex/CRH-test, this study aimed to develop a genetic variants-based alternative approach to predict the outcome of the dex/CRH-test in acute depression.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China.
Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quantum many-body models that are intractable for classical computers. However, learning the simulated Hamiltonian, a prerequisite for any quantitative applications of a quantum simulator, remains an outstanding challenge due to the fast increasing time cost with the qubit number and the lack of high-fidelity universal gate operations in the noisy intermediate-scale quantum era. Here, we demonstrate the Hamiltonian learning of a two-dimensional ion trap quantum simulator with 300 qubits.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.
Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.
The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of Maryland, College Park, Joint Quantum Institute, Condensed Matter Theory Center and, Department of Physics, Maryland 20742-4111, USA.
Discrete time crystals are novel phases of matter that break the discrete time translational symmetry of a periodically driven system. In this Letter, we propose a classical system of weakly nonlinear parametrically driven coupled oscillators as a test bed to understand these phases. Such a system of parametric oscillators can be used to model period-doubling instabilities of Josephson junction arrays as well as semiconductor lasers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!