Endoplasmic reticulum-quality control pathway and endoplasmic reticulum-associated degradation mechanism regulate the N-glycoproteins and N-glycan structures in the diatom Phaeodactylum tricornutum.

Microb Cell Fact

Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, Guangdong, China.

Published: October 2022

Tunicamycin inhibits the first step of protein N-glycosylation modification. However, the physiological, transcriptomic, and N-glycomic effects of tunicamycin on important marine diatom Phaeodactylum tricornutum are still unknown. In this study, comprehensive approaches were used to study the effects of tunicamycin stress. The results showed that cell growth and photosynthesis were significantly inhibited in P. tricornutum under the tunicamycin stress. The soluble protein content was significantly decreased, while the soluble sugar and neutral lipid were dramatically increased to orchestrate the balance of carbon and nitrogen metabolisms. The stress of 0.3 μg ml tunicamycin resulted in the differential expression of ERQC and ERAD related genes. The upregulation of genes involved in ERQC pathway, the activation of anti-oxidases and the differential expression of genes related with ERAD mechanism might be important for maintaining homeostasis in cell. The identification of N-glycans, especially complex-type N-glycan structures enriched the N-glycan database of diatom P. tricornutum and provided important information for studying the function of N-glycosylation modification on proteins. As a whole, our study proposed working models of ERQC and ERAD will provide a solid foundation for further in-depth study of the related mechanism and the diatom expression system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585838PMC
http://dx.doi.org/10.1186/s12934-022-01941-yDOI Listing

Publication Analysis

Top Keywords

n-glycan structures
8
diatom phaeodactylum
8
phaeodactylum tricornutum
8
tricornutum tunicamycin
8
n-glycosylation modification
8
effects tunicamycin
8
tunicamycin stress
8
differential expression
8
erqc erad
8
tunicamycin
5

Similar Publications

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Glycosylation is a ubiquitous and the most structurally diverse post-translational modification of proteins. High levels of phenotypic heterogeneity in brain tumors affect the biosynthetic pathway of glycosylation machinery, resulting in aberrant glycosylation patterns. Traditionally, unique glycocode readers, carbohydrate-binding proteins, have been used to identify differentially expressed carbohydrate determinants associated with the tumor cell surface.

View Article and Find Full Text PDF

Ionization Characteristics of Glycan Homologues in Various Modes of Electrospray.

J Am Soc Mass Spectrom

December 2024

Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States.

Fluorescence labeled glycan homologous mixtures were quantified using fluorescence and then used to evaluate ionization performances in electrospray ionization at micro, nano, and femto flow modes. nanoESI produced higher (2+ and 3+) charged ions adducted with sodium and calcium. In comparison, femtoESI was found to favor the generation of [M + H] ions against metal adducts, even with nonvolatile salts up to 1 mM for NaCl and 100 μM for CaCl.

View Article and Find Full Text PDF

Carbohydrate-mediated interactions between chloroviruses and the immune system.

Commun Biol

December 2024

Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Understanding the molecular mechanisms which drive and modulate host-pathogen interactions are essential when designing effective therapeutic and diagnostic approaches aimed at controlling infectious diseases. Certain large and giant viruses have recently been discovered as components of the human virome, yet little is known about their interactions with the host immune system. We have dissected the role of viral N-linked glycans during the interaction between the glycoproteins from six chloroviruses (belonging to three chlorovirus classes: NC64A, SAG, and Osy viruses) and the representative carbohydrate-binding receptors of the innate immune system.

View Article and Find Full Text PDF

A comprehensive view of N-glycosylation as clinical biomarker in prostate cancer.

Biochim Biophys Acta Rev Cancer

December 2024

Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium. Electronic address:

Alterations in the prostate cancer (PCa) N-glycome have gained attention as a potential biomarker. This comprehensive review explores the diversity of N-glycosylation patterns observed in PCa-related cell lines, tissue, serum and urine, focusing on prostate-specific antigen (PSA) and the total pool of glycoproteins. Within the context of PCa, altered N-glycosylation patterns are a mechanism of immune escape and a disruption in normal glycoprotein distribution and trafficking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!