METTL3 modulates chromatin and transcription dynamics during cell fate transition.

Cell Mol Life Sci

Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.

Published: October 2022

Transcriptional programming plays a key role in determining the cell state. Timely reconfiguration of chromatin structure and attenuation of pluripotent genes are required for efficient embryonic stem cell (ESC) differentiation. Here, we identify METTL3, a core N-methyladenosine (mA) catalyzing enzyme, as a crucial modulator of dynamic transcription and chromatin accessibility upon ESC-derived cardiac differentiation. Genome-wide analysis of chromatin-associated RNAs revealed that depletion of METTL3 failed to dramatically attenuate the transcription of pluripotent genes, as well as activate nascent cardiomyocyte-specific transcripts upon differentiation. Consistently, ATAC-seq analysis showed that loss of METTL3 markedly attenuated the dynamic alteration of chromatin accessibility at both promoters and gene bodies, resulting in reduced sensitivity of ESC chromatin structure to cardiac differentiation signal. Furthermore, we found that METTL3 negatively regulated the histone modifications H3K4me3 and H3K36me3, which are involved in METTL3-modulated dynamic chromatin architecture during cell state transition. Unexpectedly, using chromatin-associated mA sequencing, we found that nuclear mA underwent a dramatic increase upon differentiation, which correlates with the decrease of chromatin accessibility. Collectively, our findings reveal that METTL3 and nuclear mA epitranscriptome couple with chromatin state to ensure transcriptional regulation of cell fate transition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-022-04590-xDOI Listing

Publication Analysis

Top Keywords

chromatin accessibility
12
chromatin
8
cell fate
8
fate transition
8
cell state
8
chromatin structure
8
pluripotent genes
8
cardiac differentiation
8
mettl3
6
cell
5

Similar Publications

Descart: a method for detecting spatial chromatin accessibility patterns with inter-cellular correlations.

Genome Biol

December 2024

Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.

Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility landscape of complex tissues. Here, we propose an efficient and iterative model, Descart, for spatially variable peaks identification based on the graph of inter-cellular correlations.

View Article and Find Full Text PDF

Deficiency of ATF2 retards senescence induced by replication stress and pamidronate in mouse jaw bone marrow stem cells.

Cell Signal

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The aging process is associated with a loss of bone mass and an accumulation of senescent cells, which is under epigenetic control. Morphological and molecular analysis revealed a notable reduction in bone mass and alveolar crest height in aged mice, accompanied by increased levels of senescent mouse jaw bone marrow stem cells (mJBMSCs). To investigate whether specific transcription factors are involved, assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed on mJBMSCs isolated from 2-, 4-, 8-, and 20-month-old mice.

View Article and Find Full Text PDF

Identification of assembly mode of non-canonical BAF (ncBAF) chromatin remodeling complex core module.

Biochem Biophys Res Commun

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.

View Article and Find Full Text PDF

Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells.

Stem Cell Reports

December 2024

School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China. Electronic address:

Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge.

View Article and Find Full Text PDF

Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice.

Dev Cell

December 2024

Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:

Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!