Introduction: Coronary artery disease (CAD), characterized by an atherogenic process in the coronary arteries, is one of the leading causes of death in Madeira. The GENEMACOR (GENEs in MAdeira and CORonary Disease) study sought to investigate the main risk factors - environmental and genetic - and estimate whether a genetic risk score (GRS) improves CAD prediction, discrimination and reclassification.

Methods: Traditional risk factors and 33 CAD genetic variants were considered in a case-control study with 3139 individuals (1723 patients and 1416 controls). The multivariate analysis assessed the likelihood of CAD. A multiplicative GRS (mGRS) was created, and two models (with and without mGRS) were prepared. Two areas under receiver operating characteristic curve (area under curve (AUC)) were analyzed and compared to discriminate CAD likelihood. Net reclassification improvement (NRI) and integrated discrimination index (IDI) were used to reclassify the population.

Results: All traditional risk factors were strong and independent predictors of CAD, with smoking being the most significant (OR 3.25; p<0.0001). LPA rs3798220 showed a higher CAD likelihood (odds ratio 1.45; p<0.0001). Individuals in the fourth mGRS quartile had an increased CAD probability of 136% (p<0.0001). A traditional risk factor-based model estimated an AUC of 0.73, rising to 0.75 after mGRS inclusion (p<0.0001), revealing a better fit. Continuous NRI better reclassified 28.1% of the population, and categorical NRI mainly improved the reclassification of the intermediate risk group.

Conclusions: CAD likelihood was influenced by traditional risk factors and genetic variants. Incorporating GRS into the traditional model improved CAD predictive capacity, discrimination and reclassification. These approaches may provide helpful diagnostic and therapeutic advances, especially in the intermediate risk group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.repc.2022.01.009DOI Listing

Publication Analysis

Top Keywords

risk factors
12
coronary disease
8
madeira genemacor
8
traditional risk
8
cad
6
risk
5
impact genetic
4
coronary
4
genetic coronary
4
disease risk
4

Similar Publications

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Background: We aimed to assess impairments on health-related quality of life, and mental health resulting from Retinal artery occlusion (RAO) with monocular visual field loss and posterior circulation ischemic stroke (PCIS) with full or partial hemianopia using patient-reported outcome measures (PROMs).

Methods: In a prospective study, consecutive patients with acute RAO on fundoscopy and PCIS on imaging were recruited during their surveillance on a stroke unit over a period of 15 months. Baseline characteristics were determined from medical records and interviews.

View Article and Find Full Text PDF

The Geriatric Nutritional Risk Index (GNRI) is an effective tool for identifying malnutrition, and helps monitor the prognosis of patients undergoing maintenance hemodialysis. However, the association between the GNRI and cardiovascular or all-cause mortality in hemodialysis patients remains unclear. Therefore, this study investigated the correlation of the GNRI with all-cause and cardiovascular mortality in patients undergoing maintenance hemodialysis.

View Article and Find Full Text PDF

How Outcome Prediction Could Aid Clinical Practice.

Br J Hosp Med (Lond)

January 2025

Department of Surgery & Cancer, Imperial College London, London, UK.

Predictive algorithms have myriad potential clinical decision-making implications from prognostic counselling to improving clinical trial efficiency. Large observational (or "real world") cohorts are a common data source for the development and evaluation of such tools. There is significant optimism regarding the benefits and use cases for risk-based care, but there is a notable disparity between the volume of clinical prediction models published and implementation into healthcare systems that drive and realise patient benefit.

View Article and Find Full Text PDF

The background for establishing and verifying a dehydration prediction model for elderly patients with post-stroke dysphagia (PSD) based on General Utility for Latent Process (GULP) is as follows: For elderly patients with PSD, GULP technology is utilized to build a dehydration prediction model. This aims to improve the accuracy of dehydration risk assessment and provide clinical intervention, thereby offering a scientific basis and enhancing patient prognosis. This research highlights the innovative application of GULP technology in constructing complex medical prediction models and addresses the special health needs of elderly stroke patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!