A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dysfunction of the Brain-derived Neurotrophic Factor-Tyrosine Kinase B Signaling Pathway Contributes to Learning and Memory Impairments Induced by Neuroinflammation in Mice. | LitMetric

Accumulating evidence suggests that neuroinflammation is the main mechanism in cognitive dysfunction and that brain-derived neurotrophic factor (BDNF) is involved in learning and memory by binding to tyrosine kinase B (TrkB) receptors. Herein, we tested the roles of the BDNF-TrkB signaling pathway and its downstream cascade in lipopolysaccharide (LPS) induced cognitive dysfunction in mice. Mice were treated with LPS (0.25 mg/kg) for 7 days, and learning and memory function was evaluated by the novel object recognition test (NORT). Western blotting was performed to elucidate roles of the BDNF-TrkB signaling pathway and its downstream cascades in LPS mice. The NORT showed that LPS induced learning and memory deficits in mice. The levels of IL-1β, IL-6, and TNF-α in the serum and central nervous system decreased in LPS mice. In addition, LPS reduced the protein levels of BDNF, p-TrkB, Bcl-2, p-ERK1/2, p-CaMK2, p-CREB and p-GluR1 and increased the expression of Bax in the hippocampus and medial prefrontal cortex regions. In the entorhinal cortex, the protein levels of BDNF, p-TrkB, Bcl-2, p-CaMK2 and p-CREB were decreased, and the protein level of Bax was increased in LPS mice. Interestingly, 7,8-DHF alleviated these disorders in LPS mice and improved learning and memory function; however, the TrkB antagonist ANA12 effectively reversed effects of 7,8-DHF. Therefore, we conclude that the BDNF-TrkB signaling pathway and its downstream cascades disorders in different regions are main mechanisms of cognitive dysfunction, and 7,8-DHF maybe useful as a new treatment for preventing or treating cognitive dysfunction induced by neuroinflammation in neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2022.10.003DOI Listing

Publication Analysis

Top Keywords

learning memory
20
signaling pathway
16
cognitive dysfunction
16
lps mice
16
bdnf-trkb signaling
12
pathway downstream
12
dysfunction brain-derived
8
brain-derived neurotrophic
8
induced neuroinflammation
8
mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!