A polymer-based carbon paste electrode was constructed by electropolymerized Alizarin Red S (ARS) film on the carbon paste electrode (CPE) surface. The electrochemical properties of poly-ARS/CPE were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was utilized for electrode characterization. The electropolymerization cycles for the construction of the sensor and the supporting electrolyte were optimized. With 0.1 M LiClO as a supporting electrolyte, poly-ARS/CPE was able to generate oxidation peaks for anthracene (ANT) and phenanthrene (PHE), that were clearly defined and easily distinguished from one to another when operating in square wave voltammetry (SWV). In the simultaneous detection the linear ranges of ANT and PHE were within 80-1000 μM, with detection limits of 24 μM. The variation of peak parameters with scan rate was investigated to determine the nature of electrooxidation and the number of electrons involved in the electrode process. Poly-ARS/CPE was successfully utilized for the detection of ANT and PHE in different water samples and the obtained results suggested the selectivity, stability and reproducibility of the modified electrode.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136909DOI Listing

Publication Analysis

Top Keywords

paste electrode
12
carbon paste
8
supporting electrolyte
8
ant phe
8
electrode
6
simultaneous determination
4
determination anthracene
4
anthracene phenanthrene
4
phenanthrene poly-alizarin
4
poly-alizarin red
4

Similar Publications

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

Tirofiban hydrochloride is used to inhibit platelet aggregation, which has a significant impact on the treatment of congestive heart failure the most common cause of death according to WHO. Therefore, its quantification in pharmaceutical dosage form is critical. In this work, an electrochemical method for the determination of tirofiban HCl in pharmaceutical dosage form was developed and validated.

View Article and Find Full Text PDF

The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract.

View Article and Find Full Text PDF

Azithromycin (AM) is one of the prescribed drugs in pandemic medication treatment which has paid great attention. We developed in this study a simply modified carbon paste electrode (CPE) to detect AM using poly-threonine (PT). PT or similar polymers are used as carriers to enhance the delivery and effectiveness of AM.

View Article and Find Full Text PDF

Solution combustion synthesis of ZnO doped CuO nanocomposite for photocatalytic and sensor applications.

Sci Rep

January 2025

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!